Math 1A - Chapter 1 Test - Sampling of Fair Game - Solutions

1. Consider the line segment connecting the points $\left(2+x^{2}, 2 x\right)$ and $\left(3,4 x^{2}\right)$.
a. Show that the slope of this line segment is given by the function $m(x)=\frac{4 x^{2}-2 x}{1-x^{2}}$.

A: The slope formula here yields $m=\frac{4 x^{2}-2 x}{3-\left(2+x^{2}\right)}=\frac{2 x(2 x-1)}{1-x^{2}}=\frac{2 x(2 x-1)}{(1-x)(1+x)}$.
b. What is the domain of $m(x)$?

A: The domain will be all x except ± 1. In interval notation, $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.
c. What are the vertical asymptotes of $m(x)$?

A: The vertical asymptotes are along $x= \pm 1$.
d. What is the horizontal asymptote of $m(x)$?

A: $y=2$ is the horizontal asymptote.
e. What are the x-intercepts of $m(x)$?

A: The x-intercepts are at $x=0$ and $x=1 / 2$.
2. Consider the function $f(x)=\sqrt{1-e^{x}}$
a. Find a formula $f^{-1}(x)$ for the inverse function for f.

A: $y=\sqrt{1-e^{x}} \Leftrightarrow y^{2}=1-e^{x} ; y \geq 0 \Leftrightarrow x=\ln \left(1-y^{2}\right) ; y \geq 0$ so $f^{-1}(x)=\ln \left(1-x^{2}\right) ; x \geq 0$
b. Complete a short table of values (at least 3 coordinate pairs) and sketch a graph for both $f(x)$ and $f^{-1}(x)$ showing the asymptotic behavior of each and their symmetry through the line $y=x$.

3. Consider the function $y(t)=\sin t$.
a. Write a formula for the function that results from stretching $y(t)$ vertically by a factor 5 and compressing horizontally by a factor 2π.
$\mathrm{A}: \quad f(t)=5 y(2 \pi t)=5 \sin (2 \pi t)$
b. Write a formula for the function that results from stretching and compressing $y(t)$ as in part (a) and then shifting two units up and $1 / 4$ unit to the right?

A: $f(t)=2+5 y\left(2 \pi\left(t-\frac{1}{4}\right)\right)=2+5 \sin \left(2 \pi t-\frac{\pi}{2}\right)$
4. An initial population of 12,345 grows by 7% every month.
a. Find a formula for the population size after n months, as a function of n.

A: $P(n)=12345(1.07)^{n}$
b. Find the average rate of change of the population over the twelfth week.

A: $\frac{P(12)-P(11)}{12-11}=12345\left(1.07^{12}-1.07^{11}\right) \approx 1819$ animals per month.
5. Consider the function $g(x)=2 x^{2}-8 x-3$.
a. Write the formula in complete square form; that is, find values for a, h, and k so that $g(x)=a(x-h)^{2}+k$.
A: $g(x)=2 x^{2}-8 x-3=2\left(x^{2}-4 x\right)-3=2\left(x^{2}-4 x+4\right)-3-8=2(x-2)^{2}-11$
b. Describe a sequence of transformations (horizontal/vertical shifts and/or horizontal/vertical stretches and/or reflections) to transform $y=g(x)$ to $y=x^{2}$.
A: Shift 11 units up, 2 units left and then compress vertically by a factor 2 .
6. Eliminate the parameter for the parametric equations:

$$
\begin{aligned}
& x=\sec \theta \\
& y=2 \tan ^{2} \theta
\end{aligned}
$$

and sketch a graph for the curve over the interval $0 \leq \theta \leq \frac{\pi}{4}$. Indicate with arrows the direction the curve follows over this interval. A: From the Pythagorean identity, $\tan ^{2} \theta+1=\sec ^{2} \theta$, we can easily substitute to obtain $\frac{y}{2}+1=x^{2} \Leftrightarrow y=2 x^{2}-2$. For $0 \leq \theta \leq \frac{\pi}{4}$, $1 \leq x \leq \sqrt{2}$ and $0 \leq y \leq 2$, following the cuve of the parabola like as shown.

7. Write an equation for the cubic polynomial whose graph is shown

A: Since the roots of the cubic are at $x=-2,1$ and 2.5 , the cubic will have the form $y=a(x+2)(x-1)(x-2.5)$, to fit the vertical scale, choose $a=$ 2 so the y-intercept fits $(0,10)$: $y=2(x+2)(x-1)(x-2.5)$
8. Write parametric equations which describe the ellipse with Cartesian equation $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ and give a range of the parameter which completes one trace of the ellipse.
A: Based on the Pythagorean identity, choose

$$
\frac{x^{2}}{2}=\cos ^{2} t ; \frac{y^{2}}{4}=\sin ^{2} t \Leftarrow x=\sqrt{2} \cos t ; y=2 \sin t . \quad 0 \leq t \leq 2 \pi
$$

9. Graph two different members of the family of functions described by $f(x)=\ln \left(x^{2}-c\right)$ for two different positives values of c. Write a sentence or two describing how the value c shapes the graph.
A: Graphs of $f(x)=\ln \left(x^{2}-1\right)$ and $f(x)=\ln \left(x^{2}-4\right)$ are shown below. $f(x)=\ln \left(x^{2}-c\right)$ will have vertical asymptotes along $x= \pm \sqrt{c}$.

10. Consider the function $f(x)=x+2 \ln (x+1)$
a. Tabulate at least 3 different input/output values for $f(x)$.

A: | x | 0 | $e-1$ | $e^{2}-1$ |
| :---: | :---: | :---: | :---: |
| $f(x)$ | 0 | $e+1$ | $e^{2}+3$ |

b. Tabulate at least 3 different input/output values for $f^{-1}(x)$.

A: | x | 0 | $e+1$ | $e^{2}+3$ |
| :---: | :--- | :--- | :--- |
| $f^{-1}(x)$ | 0 | $e-1$ | $e^{2}-1$ |

