\qquad
Show your work for credit. Write all responses on separate paper. Do not use a calculator.

1. Consider the following graph for the derivative function $f(x)=F^{\prime}(x)$. That is, the graph shows the values slopes of the tangent line to $y=F(x)$ for values of x between about -8.7 and 6.7. In what follows, be very careful to distinguish between $F(x), f(x)$ and $f^{\prime}(x)$.

a. Note that this tells us nothing about the actual values of $F(x)$, just how $F(x)$ is changing, so further assume that $F(-7)=0$, what would be the value of $F(-6)$?
b. Based on the graph, find $\lim _{x \rightarrow-5^{-}} F(x)$ if it exists, if not, explain why not.
c. Where does $f(x)$ is have a jump discontinuity? List all values of x where this is true.
d. Where does $f(x)$ is have a removable discontinuity? List all values of x where this is true.
e. Where does $f^{\prime}(x)$ have a jump discontinuity?
f. Over what interval(s) is $F(x)$ increasing?
g. Where does $F(x)$ have inflection points?
h. Where is $f(x)$ defined and yet $f^{\prime}(x)$ is not defined?
2. If the tangent to $y=f(x)$ at $(0,2)$ passes through the point $(3,0)$, find $f^{\prime}(0)$.
3. Is there a number a such that $\lim _{x \rightarrow 1} \frac{x+a}{x^{2}+x-2}$ exists? If not, why not? If so, find the value of a and the value of the limit.
4. Find the limit. Explain your answers.
a. $\lim _{x \rightarrow 3} \frac{\sqrt{x^{2}-9}}{x-3}$
b. $\lim _{x \rightarrow 0} x \ln x$
c. $\lim _{x \rightarrow \infty} \frac{1-\cos x}{x}$
5. Consider the function $f(x)=e^{x} \cos x$
a. Find a formula for the second derivative $f^{\prime \prime}(x)$.
b. Over what interval(s) is $f(x)$ concave up?
6. Show that $\lim _{u \rightarrow 0} \frac{1-\cos u}{u}=0$ and use the definition of the derivative to find $f^{\prime}(x)$ where $f(x)=\sin x$. You may assume $\lim _{u \rightarrow 0} \frac{\sin u}{u}=1$.
7. Suppose a function $y=f(x)$ satisfies the equation $y^{2} \cos (\pi x)+x^{2} y+y^{3}=1$ in a neighborhood of the point $(1,1)$. Find an equation for the tangent line at $(1,1)$.
8. Use a linear approximation to estimate $\arctan \left(\frac{3}{4}\right)$ by considering the tangent line to $y=\arctan x$ at $x=1$. Approximate to 3 significant digits.
9. A spherical balloon is filling with water at a rate of $\pi \mathrm{cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the radius is 2 cm ? Useful formulas might include $V=\frac{4}{3} \pi r^{3}$ and $A=4 \pi r^{2}$.
10. Show there are no values of x in the interval $(-1,1)$ that satisfy the conclusion of the mean value theorem for $f(x)=\frac{1}{x}$. Why does this not contradict the theorem?
11. If a resistor of r ohms is connected across a battery of V volts with internal resistance R ohms, then the power in watts in the external resistor is $P(r)=\frac{V^{2} r}{(r+R)^{2}}$. If V and R are constant by r varies, what is the maximum value of the power?
12. Consider the equation $\sin 3 x=1-x^{3}$
a. Use the intermediate value theorem to prove that this equation has a solution in $\left[0, \frac{\pi}{3}\right]$
b. Use Newton's method to find the next estimate to the solution starting from $x_{1}=\frac{\pi}{6}$.
13. Find the antiderivative of $f(x)=\frac{8}{x^{2}}$ which has $y=x$ as a tangent line.
