Name \qquad
Show your work for credit. Write all responses on separate paper. Do not use a calculator.

1. Consider the following graph for the derivative function $f(x)=F^{\prime}(x)$. That is, the graph shows the values slopes of the tangent line to $y=F(x)$ for values of x between about -8.7 and 6.7. In what follows, be very careful to distinguish between $F(x), f(x)$ and $f^{\prime}(x)$.

a. Note that this tells us nothing about the actual values of $F(x)$, just how $F(x)$ is changing, so further assume that $F(-7)=0$, what would be the value of $F(-6)$?
SOLN: Since F is increasing at a constant rate of 2 per 1 during this interval, $F(-6)=2$
b. Based on the graph, find $\lim _{x \rightarrow-5^{-}} F(x)$ if it exists, if not, explain why not.

SOLN: Since F continues to grow at this rate throughout the interval up to $x=-5$, $\lim _{x \rightarrow-5^{-}} F(x)=4$
c. Where does $f(x)$ is have a jump discontinuity? List all values of x where this is true.

SOLN: $f(x)$ has jump discontinuities where $\boldsymbol{x}=\mathbf{- 5}$ and $\boldsymbol{x}=\mathbf{- 2}$
d. Where does $f(x)$ is have a removable discontinuity? List all values of x where this is true. SOLN: $f(x)$ has a removable discontinuity where $\boldsymbol{x}=\mathbf{1}$.
e. Where does $f^{\prime}(x)$ have a jump discontinuity?

SOLN: $f^{\prime}(x)$ has jump discontinuity wherever there's an abrupt change in slope from one finite value to another. This happens where $\boldsymbol{x}=\mathbf{- 5}, \boldsymbol{x}=\mathbf{- 4}, \boldsymbol{x}=-\mathbf{2}$ and $\boldsymbol{x}=\mathbf{4}$.
f. Over what interval(s) is $F(x)$ increasing?

SOLN: F is increasing where $f(x)>0$ which is true on
$(-7.5,-5),(-5,-2),(-2,1),(1,2.6),(3.6,6)$
g. Where does $F(x)$ have inflection points?

SOLN: $F(x)$ has inflection points where $F^{\prime \prime}(x)=f^{\prime}(x)$ changes sign. This is were f is continuous and stops increasing and starts decreasing, or vice versa. Thus F has inflection points where $\boldsymbol{x}=-\mathbf{4}, \boldsymbol{x}=-\mathbf{1}$, and $\boldsymbol{x}=\mathbf{4}$. You may thing there ought to be an inflection point where $x=1$, but since $\lim _{x \rightarrow 1} F^{\prime}(x)=\lim _{x \rightarrow 1} f(x)=9$ exists while $f(1)$ does not exist, it must be that F has either a jump or removable discontinuity where $x=1$ and so there is no inflection point.
h. Where is $f(x)$ defined and yet $f^{\prime}(x)$ is not defined?

SOLN: This will be where f is continuous but has no tangent line of finite slope. That's true where $x=-4, x=4$, and $x=6$.
2. If the tangent to $y=f(x)$ at $(0,2)$ passes through the point $(3,0)$, find $f^{\prime}(0)$.

SOLN: Clearly $f^{\prime}(0)=\frac{2-0}{0-3}=-\frac{2}{3}$
3. Is there a number a such that $\lim _{x \rightarrow 1} \frac{x+a}{x^{2}+x-2}$ exists? If not, why not? If so, find the value of a and the value of the limit.
SOLN: $\lim _{x \rightarrow 1} \frac{x+a}{x^{2}+x-2}$ exists only if $a=-1: \lim _{x \rightarrow 1} \frac{x-1}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+2)}=\lim _{x \rightarrow 1} \frac{1}{x+2}=\frac{1}{3}$
4. Find the limit. Explain your answers.
a. $\lim _{x \rightarrow 3^{+}} \frac{\sqrt{x^{2}-9}}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{\sqrt{(x-3)(x+3)}}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{\sqrt{x+3}}{\sqrt{x-3}}=\infty$
b. $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}(-x)=0$
c. $\lim _{x \rightarrow \infty} \frac{1-\cos x}{x}=0$ by the squeeze theorem: $0 \leq \frac{1-\cos x}{x} \leq \frac{2}{x}$
5. Consider the function $f(x)=e^{x} \cos x$
a. Find a formula for the second derivative $f^{\prime \prime}(x)$.

SOLN: $f^{\prime}(x)=e^{x}(\cos x-\sin x)=-\sqrt{2} \sin \left(x-\frac{\pi}{4}\right) e^{x}$ so that $f^{\prime \prime}(x)=e^{x}(-\sin x-\cos x+\cos x-\sin x)=-2 \sin x e^{x}$
b. Over what interval(s) is $f(x)$ concave up?

SOLN: $f(x)$ is concave up where $\sin x<0$; that is, on intervals of the form $((2 k-1) \pi, 2 k \pi)$ where k is any integer.
6. Show that $\lim _{u \rightarrow 0} \frac{1-\cos u}{u}=0$ and use the definition of the derivative to find $f^{\prime}(x)$ where $f(x)=\sin x$. You may assume $\lim _{u \rightarrow 0} \frac{\sin u}{u}=1$.

SOLN:

$$
\lim _{u \rightarrow 0} \frac{1-\cos u}{u}=\lim _{u \rightarrow 0} \frac{(1-\cos u)}{u} \frac{(1+\cos u)}{(1+\cos u)}=\lim _{u \rightarrow 0} \frac{1-\cos ^{2} u}{u(1+\cos u)}=\lim _{u \rightarrow 0} \frac{\sin ^{2} u}{u(1+\cos u)}
$$

$$
=\lim _{u \rightarrow 0} \frac{\sin u}{u} \lim _{u \rightarrow 0} \frac{\sin u}{1+\cos u}=1 \cdot 0=0
$$

$$
f^{\prime}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}=\lim _{\beta \rightarrow x} \frac{\sin x \cos h+\cos x \sin h-\sin (x)}{h}
$$

$$
=\cos (x) \lim _{h \rightarrow 0} \frac{\sin h}{h}+\sin (x) \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=\cos x
$$

However, you can skip this limit if you use the sum to product identity like so:

$$
\begin{aligned}
f^{\prime}(x) & \equiv \lim _{\beta \rightarrow x} \frac{f(x)-f(\beta)}{x-\beta}=\lim _{\beta \rightarrow x} \frac{\sin (x)-\sin (\beta)}{x-\beta}=\lim _{\beta \rightarrow x} \frac{\cos \left(\frac{x+\beta}{2}\right) \sin \left(\frac{x-\beta}{2}\right)}{\frac{x-\beta}{2}} \\
& =\lim _{\beta \rightarrow x} \cos \left(\frac{x+\beta}{2}\right) \lim _{\frac{x-\beta}{2} \rightarrow 0} \frac{\sin \left(\frac{x-\beta}{2}\right)}{\frac{x-\beta}{2}}=\cos x
\end{aligned}
$$

7. Suppose a function $y=f(x)$ satisfies the equation $y^{2} \cos (\pi x)+x^{2} y+y^{3}=1$ in a neighborhood of the point $(1,1)$. Find an equation for the tangent line at $(1,1)$.
SOLN: Differentiateing with respect to x we have
$2 y y^{\prime} \cos (\pi x)-\pi y^{2} \sin (\pi x)+2 x y+x^{2} y^{\prime}+3 y^{2} y^{\prime}=0$ and then plug in $x=y=1$ to get $-2 y^{\prime}+2+y^{\prime}+3 y^{\prime}=2 y^{\prime}+2=0 \Leftrightarrow y^{\prime}=-1$ so the tangent line is $y=1-(x-1)=2-x$.
8. Use a linear approximation to estimate $\arctan \left(\frac{3}{4}\right)$ by considering the tangent line to $y=\arctan x$ at $x=\frac{\pi}{4}$. Approximate to 3 significant digits.
SOLN:
$\arctan (x) \approx \arctan (a)+\frac{1}{1+a^{2}}(x-a) \Rightarrow \arctan \left(\frac{3}{4}\right) \approx \arctan \left(\frac{\pi}{4}\right)+\frac{1}{1+\left(\frac{\pi}{4}\right)^{2}}\left(\frac{3}{4}-\frac{\pi}{4}\right)$
$\approx 0.665774+\frac{1}{1+0.61685}(-0.035398) \approx 0.643881$
This, of course, was not the sensible question to ask. Rather, we should use the value at $x=1$ to approximate the value at $x=3 / 4$ like so:
$\arctan \left(\frac{3}{4}\right) \approx \arctan (1)+\frac{1}{1+(1)^{2}}\left(\frac{3}{4}-1\right)=\frac{\pi}{4}-\frac{1}{8}=\frac{2 \pi-1}{8} \approx \frac{5.2832}{8}=0.6604$
The best three-digit approximation 0.644 , so while the first approximation is better, it requires a calculator, where the second doesn't.
9. A spherical balloon is filling with water at a rate of $\pi \mathrm{cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the radius is 2 cm ? Useful formulas might include $V=\frac{4}{3} \pi r^{3}$ and $A=4 \pi r^{2}$. SOLN: Given that $\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t}=\pi \Rightarrow \frac{d r}{d t}=\frac{1}{4 r^{2}}$ and $\frac{d A}{d t}=\frac{d A}{d r} \frac{d r}{d t}=8 \pi r\left(\frac{1}{4 r^{2}}\right)=\frac{2 \pi}{r}$, when $r=2, \frac{d A}{d t}=\pi \mathrm{cm}^{2} / \mathrm{sec}$.
10. Show there are no values of x in the interval $(-1,1)$ that satisfy the conclusion of the mean value theorem for $f(x)=\frac{1}{x}$. Why does this not contradict the theorem?
SOLN: $f^{\prime}(x)=\frac{-1}{x^{2}}=\frac{f(1)-f(-1)}{2}=1 \Leftrightarrow x^{2}=-1$ has no real solution. This doesn't violate the
theorem because $f(x)=\frac{1}{x}$ is not differentiable on $(-1,1)$.
11. If a resistor of r ohms is connected across a battery of V volts with internal resistance R ohms, then the power in watts in the external resistor is $P(r)=\frac{V^{2} r}{(r+R)^{2}}$. If V and R are constant by r varies, what is the maximum value of the power?
SOLN: $P^{\prime}(r)=\frac{V^{2}(r+R)^{2}-2(r+R) r V^{2}}{(r+R)^{4}}=\frac{V^{2}(r+R)-2 r V^{2}}{(r+R)^{3}}=0 \Leftrightarrow r+R=2 r \Leftrightarrow r=R$
12. Consider the equation $\sin 3 x=1-x^{3}$
a. Use the intermediate value theorem to prove that this equation has a solution in $\left[0, \frac{\pi}{3}\right]$

SOLN: Let $f(x)=\sin 3 x-1+x^{3}$ then if a is a solution to the equation, $f(a)=0$. Now $f(x)$ is a sum of continuous function so it must also be continuous, in particular continuous on $\left[0, \frac{\pi}{3}\right]$ so that, by the Intermediate Value Theorem, since $f(0)=-1<0$ and $f\left(\frac{\pi}{3}\right)=\left(\frac{\pi}{3}\right)^{3}-1>0$, there exists c in $\left(0, \frac{\pi}{3}\right)$ such that $f(c)=0 \Leftrightarrow \sin 3 c=1-c^{3}$
b. Use Newton's method to find the next estimate to the solution starting from $x_{1}=\frac{\pi}{6}$.

SOLN: $x_{2}=\frac{\pi}{6}-\frac{\sin \left(\frac{\pi}{2}\right)-1+\left(\frac{\pi}{6}\right)^{3}}{3 \cos \left(\frac{\pi}{2}\right)+3\left(\frac{\pi}{6}\right)^{2}}=\frac{\pi}{6}-\frac{\left(\frac{\pi}{6}\right)^{3}}{3\left(\frac{\pi}{6}\right)^{2}}=\frac{\pi}{6}-\frac{\pi}{18}=\frac{\pi}{9}$
13. Find the antiderivative of $f(x)=\frac{8}{x^{2}}$ which has $y=x$ as a tangent line.

SOLN: $F(x)=\frac{-8}{x}+c \Rightarrow f(x)=F^{\prime}(x)=\frac{8}{x^{2}}$. If $y=x$ is tangent to the curve at $x=a$ then $F(a)=\frac{-8}{a}+c=a$ and $F^{\prime}(a)=\frac{8}{a^{2}}=1$. Thus $a^{2}=8 \Leftrightarrow a=2 \sqrt{2}$ so that $F(a)=\frac{-8}{2 \sqrt{2}}+c=2 \sqrt{2} \Leftrightarrow c=2 \sqrt{2}+\frac{4}{\sqrt{2}}=4 \sqrt{2}$ and so $F(x)=\frac{-8}{x}+4 \sqrt{2}$

