Write all responses on separate paper. Show your work for credit. Do not use a calculator.

1. Find an equation for the parabola with its vertex at $(2,5)$ and passing through $(0,0)$.
2. Consider the function $f(x)=x^{2}$. Find the slope of the line from $(0,0)$ to $(a, f(a))$ in terms of a.
3. Given that $f(x)=\frac{1}{x}$, simplify a formula for the function $g(x)=1+2 f(x+3)$ and sketch a graph for $y=g(x)$ showing asymptotes and intercepts.
4. The graph of a function $y=g(x)$ is given below. Use it to graph each of the following:
a. $y=2+g(x+1)$
b. $y=3 g(2 x)$

5. Consider the logarithmic function $f(x)=\log _{3}(2 x+3)$
a. Find the x - and y-intercepts for this function.
b. Find a formula for the inverse function.
c. Graph the function and its inverse together, showing the symmetry through the line $y=x$.
6. Solve the given equation in exact form and then approximate to 4 digits, if appropriate.
a. $\quad \log _{2}(4 x+4)+\log _{2}(x+1)=10$
b. $10-e^{1-x^{2}}=8$
7. Suppose a point in the fourth quadrant $(x>0$ and $y<0)$ of the unit circle has x coordinate $\frac{3}{5}$.
a. Find the y-coordinate of this point and draw the unit circle in the $x-y$ plane showing its position.
b. Suppose θ is a polar angle that terminates at this point. What are the coordinates of the terminal point for $\theta-\pi$?
8. Consider the function $f(x)=1+2 \sin \left(x+\frac{\pi}{3}\right)$ Find the (a) amplitude, (b) period and (c) phase shift for this sine function and sketch a graph showing at least one wave form and its intercepts.
9. Find a parameterization of the circle described by $x^{2}+y^{2}=4$ using trigonometric functions.
10. Find a Cartesian (rectangular) equation for the curve described by parametric equations
$x=2 \cos t$
$y=2+3 \sin t$
11. Find an equation for the parabola with its vertex at $(2,5)$ and passing through $(0,0)$.

SOLN: Plug the coordinates of the vertex into the vertex form $y=a(x-h)^{2}+k$ and you have $y=a(x-2)^{2}+5$. Now if it goes through $(0,0)$ then $0=a(0-2)^{2}+5 \Leftrightarrow a=-\frac{5}{4}$ so the equation is $y=-\frac{5}{4}(x-2)^{2}+5 \Leftrightarrow y=-1.25 x^{2}+5 x$
2. Consider the function $f(x)=x^{2}$. Find the slope of the line from $(0,0)$ to $(a, f(a))$ in terms of a. SOLN: $\frac{\Delta y}{\Delta x}=\frac{f(a)-f(0)}{a-0}=\frac{a^{2}}{a}=a$
3. Given that $f(x)=\frac{1}{x}$, simplify a formula for the function $g(x)=1+2 f(x+3)$ and sketch a graph for $y=g(x)$ showing asymptotes and intercepts.
SOLN:
$g(x)=1+2 f(x+3)=1+\frac{2}{x+3}=\frac{x+5}{x+3}$ has
horizontal asymptote along $y=1$ and vertical asymptote along $x=-3$. The intercepts are $(0,5 / 3)$ and $(-5,0)$.

4. The graph of a function $y=g(x)$ is given below. Use it to graph each of the following:
SOLN: (The original is dotted at right.)
a. $y=2+g(x+1)$

This is a shift 2 up and 1 to the left.
Note that the shape is congruent to the original (The is thicker plot starting $(-1,2)$.
b. $y=3 g(2 x)$

This is a horizontal compression by factor 2 and a vertical stretch by factor 3 - the thickest plot shown at right.

5. Consider the logarithmic function $f(x)=\log _{3}(2 x+3)$
a. Find the x - and y-intercepts for this function.

SOLN: $f(0)=\log _{3}(3)=1$ and $f(-1)=\log _{3}(1)=0$ so the intercepts are at $(0,1)$ and $(-1,0)$.
b. Find a formula for the inverse function. SOLN:

$$
\begin{aligned}
& y=\log _{3}(2 x+3) \Leftrightarrow 2 x+3=3^{y} \Leftrightarrow \\
& x=\frac{3^{y}-3}{2}=0.5\left(3^{y}\right)-1.5 \Rightarrow f^{-1}(x)=0.5\left(3^{x}\right)-1.5
\end{aligned}
$$

c. Graph the function and its inverse together, showing the symmetry through the line $y=x$ SOLN: at right:

6. Solve the given equation in exact form and then approximate to 4 digits, if appropriate.
a. $\log _{2}(4 x+4)+\log _{2}(x+1)=10 \quad$ SOLN:

$$
\log _{2}(4 x+4)+\log _{2}(x+1)=\log _{2}(4 x+4)(x+1)=10 \Leftrightarrow 4(x+1)(x+1)=2^{10} \Leftrightarrow(x+1)^{2}=2^{8} \Leftrightarrow x=-1 \pm 2^{4}
$$

But $x>-1$ so $x=-1+16=15$ is the only real solution.
b. $10-e^{1-x^{2}}=8 \quad$ SOLN:

$$
10-e^{1-x^{2}}=8 \Leftrightarrow e^{1-x^{2}}=2 \Leftrightarrow 1-x^{2}=\ln 2 \Leftrightarrow x^{2}=1-\ln 2 \Leftrightarrow x= \pm \sqrt{1-\ln 2}
$$

7. Suppose a point in the fourth quadrant $(x>0$ and $y<0)$ of the unit circle has x coordinate $\frac{3}{5}$.
a. Find the y-coordinate of this point and draw the unit circle in the $x-y$ plane showing its position.
SOLN: $y=-\sqrt{1-\left(\frac{3}{5}\right)^{2}}=-\sqrt{1-\frac{9}{25}}=-\sqrt{\frac{16}{25}}=-\frac{4}{5}$
So the point is at $(0.6,-0.8)$. The plot is shown at right.
b. Suppose θ is a polar angle that terminates at this point. What are the coordinates of the terminal point for $\theta-\pi$?
SOLN: This would be the point reflected through the origin (rotated 180°) whose coordinates are $(-0.6,0.8)$.

8. Consider the function $f(x)=1+2 \sin \left(x+\frac{\pi}{3}\right)$ Find the (a) amplitude, (b) period and (c) phase shift for this sine function and sketch a graph showing at least one wave form and its intercepts. SOLN: The amplitude $=2$, the period is 2π and the phase shift is $-\frac{\pi}{3}$. The y-intercept is at $f(0)=1+2 \sin \left(\frac{\pi}{3}\right)=1+\sqrt{3}$ and the x-intercepts are where
$\sin \left(x+\frac{\pi}{3}\right)=-\frac{1}{2} \Leftrightarrow x+\frac{\pi}{3}+2 \pi k=\frac{3 \pi}{2} \pm \frac{\pi}{3}+2 \pi k \Leftrightarrow x=\frac{7 \pi}{6} \pm \frac{\pi}{3}+2 \pi k$

9. Find a parameterization of the circle described by $x^{2}+y^{2}=4$ using trigonometric functions. SOLN: $x=2 \cos t ; y=2 \sin t$
10. Find a Cartesian (rectangular) equation for the curve described by parametric equations $x=2 \cos t ; \quad y=2+3 \sin t$
SOLN: $\left(\frac{x}{2}\right)^{2}+\left(\frac{y-2}{3}\right)^{2}=1$
