Math 1A - Chapter 4 Test Reprise - Spring '08 Name \qquad
Show your work for credit. Write all responses on separate paper. No calculators.

1. The volume of a cube is increasing at a rate of 120 meter $^{3} / \mathrm{sec}$. How fast is the surface area changing when the edge length is 10 meters? Hint: a cube has six square faces.
2. Let $f(x)=\left\{\begin{array}{ccc}x^{2} \ln x & \text { if } & x>0 \\ 0 & \text { if } & x=0\end{array}\right.$
a. Show that $f(x)$ satisfies the conditions of the extreme value theorem on $[0, e]$. Hint: This is a L'Hospital's rule problem.
b. Use the "closed interval method" to find all max and min on the interval $[0, e]$ and classify each as either local or absolute.
3. Consider the function $f(t)=e^{2 \sin t}$ on the interval $0<t<2 \pi$.
a. Where is f increasing on this interval?
b. Where is f concave up on this interval? Hint: Use the Pythagorean identity to get an equation quadratic in $\sin (x)$.
4. Find the point on the ellipse $9 x^{2}+y^{2}=9$ which is closest to the point $(0,1)$. Hint: Use the constraint to express y in terms of x. Then use the distance formula. Since the distance is certainly greater than 1 , it suffices to minimize the square of the distance.
5. Consider $f(x)=\sqrt[3]{x}$ on $[-1,1]$.
a. Explain why f doesn't satisfy the conditions of the mean value theorem on that interval.
b. Nevertheless, find all values of x which satisfy the conclusion of the mean value theorem on that interval and make a sketch to show what's going on.
6. Suppose $x_{1}=5$ is the initial guess for $\sqrt{30}$ in Newton's method with $f(x)=x^{2}-30$. What would the next iteration x_{2} be? Show that $x_{3}=\frac{241}{44}$.
7. Find the most general antiderivative of $f(x)=1.8 x^{2}$. Which antiderivative passes through the point $(1,1)$?

Math 1A - Chapter 4 Test Reprise Solutions - Spring '08

1. The volume of a cube is increasing at a rate of $120 \mathrm{~meter}^{3} / \mathrm{sec}$. How fast is the surface area changing when the edge length is 10 meters? Hint: a cube has six square faces.
SOLN: $V=x^{3} \Rightarrow \frac{d V}{d t}=\frac{d V}{d x} \frac{d x}{d t}=3 x^{2} \frac{d x}{d t}=120$, so when $x=10, \frac{d x}{d t}=\frac{2}{5}$. The surface area is $A=6 x^{2}$ so $\left.\frac{d A}{d t}\right|_{x=10}=\left.12 x\right|_{x=10} \frac{d x}{d t}=120\left(\frac{2}{5}\right)=48 \frac{\mathrm{~m}^{2}}{\mathrm{sec}}$
2. Let $f(x)=\left\{\begin{array}{ccc}x^{2} \ln x & \text { if } & x>0 \\ 0 & \text { if } & x=0\end{array}\right.$
a. Show that $f(x)$ satisfies the conditions of the extreme value theorem on $[0, e]$. Hint: This is a

L'Hospital's rule problem.
SOLN: Both x^{2} and $\ln x$ are continuous on ($0, e$, so their product will be continuous on that interval. To meet the conditions of the Mean Value Theorem, we need to product to be continuous from the right at $x=0$. Indeed the sufficient condition is met:
$\lim _{x \rightarrow 0^{+}} x^{2} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{2}=0=f(0)$.
b. Use the "closed interval method" to find all max and min on the interval $[0, e]$ and classify each as either local or absolute.
SOLN: $f^{\prime}(x)=2 x \ln x+x=x(1+2 \ln x)=0 \Rightarrow \ln x=-\frac{1}{2} \Leftrightarrow x=\frac{1}{\sqrt{e}}$ Now $f\left(\frac{1}{\sqrt{e}}\right)=\frac{1}{e}\left(\frac{-1}{2}\right)=\frac{-1}{2 e}$ is a local min since $f^{\prime \prime}(x)=3+2 \ln x \Rightarrow f^{\prime \prime}\left(e^{-1 / 2}\right)=3-1=2>0$
Now $f(0)=0$ is a local max since f is decreasing on $\left(0, \frac{1}{\sqrt{e}}\right)$ and increasing thereafter, $(0,0)$ is a local max, $\left(\frac{1}{\sqrt{e}}, \frac{-1}{e}\right)$ is an absolute \min and $\left(e, e^{2}\right)$ is an absolute max.
Here's a graph on $[-1,1]$ (TI92+) with the absolution value thrown in to give symmetry:

3. Consider the function $f(t)=e^{2 \sin t}$ on the interval $0<t<2 \pi$.
a. Where is f increasing on this interval?

SOLN: $f^{\prime}(t)=2 \cos t e^{2 \sin t}>0 \Leftrightarrow \cos t>0$ is true for $t \in\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)$.
b. Where is f concave up on this interval? Hint: Use the Pythagorean identity to get an equation quadratic in $\sin (x)$.
SOLN:

$$
\begin{aligned}
& f^{\prime \prime}(t)=\left(4 \cos ^{2} t-2 \sin t\right) e^{2 \sin t}>0 \Leftrightarrow 4 \cos ^{2} t-2 \sin t>0 \Leftrightarrow 4\left(1-\sin ^{2} t\right)-2 \sin t>0 \\
& \Leftrightarrow 2 \sin ^{2} t+\sin t-2>0 \Leftrightarrow 2 \sin ^{2} t+\sin t-2>0 \Leftrightarrow t \in\left(0, \sin ^{-1} \frac{\sqrt{17}-1}{4}\right) \cup\left(\pi-\sin ^{-1} \frac{\sqrt{17}-1}{4}, 2 \pi\right)
\end{aligned}
$$

Here's what this function looks like. The inflection points are plotted:

4. Find the point on the ellipse $9 x^{2}+y^{2}=9$ which is closest to the point $(0,1)$. Hint: Use the constraint to express y in terms of x. Then use the distance formula. Since the distance is certainly greater than 1 , it suffices to minimize the square of the distance.
SOLN: $9 x^{2}+y^{2}=9 \Leftrightarrow y= \pm 3 \sqrt{1-x^{2}}$ Since $(0,1)$ is above the x axis, choose the positive y value in computing the square of the distance:
$D^{2}=(x-0)^{2}+\left(1-3 \sqrt{1-x^{2}}\right)^{2}$ whence
$2 D D^{\prime}=2 x+2\left(1-3 \sqrt{1-x^{2}}\right)\left(\frac{3 x}{\sqrt{1-x^{2}}}\right)=0 \Leftrightarrow x+\frac{3 x}{\sqrt{1-x^{2}}}-9 x=\frac{3 x}{\sqrt{1-x^{2}}}-8 x=0$
To solve, isolate the radical and equate squares:
$\sqrt{1-x^{2}}=\frac{3}{8} \Rightarrow 1-x^{2}=\frac{9}{64} \Leftrightarrow x^{2}=\frac{55}{64} \Leftrightarrow x=\frac{ \pm \sqrt{55}}{8} \approx \pm 0.9270$.

To be sure, here's an illustration of this situation:

The y coordinate is then $y=3 \sqrt{1-\frac{55}{64}}=\frac{9}{8}$. Note that we can find the slope of the line tangent to the ellipse at that point $18 x+2 y y^{\prime}=0 \Leftrightarrow y^{\prime}=\frac{-9 x}{y}=\frac{-9 \sqrt{55} / 8}{9 / 8}=-\sqrt{55}$ and that this slope is the negative reciprocal of the slope of the line segment connecting the point to $(0,1): \frac{9 / 8-1}{\sqrt{55} / 8-0}=\frac{1}{\sqrt{55}}$
5. Consider $f(x)=\sqrt[3]{x}$ on $[-1,1]$.
a. Explain why f doesn't satisfy the conditions of the mean value theorem on that interval.
SOLN: The function is not differentiable at $x=0$. There is a vertical tangent line at $x=0$
b. Nevertheless, find all values of x which satisfy the conclusion of the mean value theorem on that interval and make a sketch to show what's going on.
SOLN: Sketch is at right. The points where the slopes of the tangent lines are parallel to the secant line are found by solving

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{3 \sqrt[3]{x^{2}}}=\frac{\sqrt[3]{1}-\sqrt[3]{-1}}{1-(-1)}=\frac{2}{2}=1 \\
& \Leftrightarrow \sqrt[3]{x^{2}}=\frac{1}{3} \Leftrightarrow x= \pm \frac{\sqrt{3}}{9}
\end{aligned}
$$

6. Suppose $x_{1}=5$ is the initial guess for $\sqrt{30}$ in Newton's method with $f(x)=x^{2}-30$. What would the next iteration x_{2} be? Show that $x_{3}=\frac{241}{44}$.
SON: $x_{2}=5-\frac{f(5)}{f^{\prime}(5)}=5+\frac{5}{10}=\frac{11}{2}$ so that $x_{3}=\frac{11}{2}-\frac{f\left(\frac{11}{2}\right)}{f^{\prime}\left(\frac{11}{2}\right)}=\frac{11}{2}-\frac{\frac{121}{4}-\frac{120}{4}}{11}=\frac{11}{2}-\frac{1}{44}=\frac{241}{44}$
7. Find the most general antiderivative of $f(x)=1.8 x^{2}$. Which antiderivative passes through $(1,1)$?

SOLN: The set of all antiderivatives is found by adding a constant to the most obvious antiderivative:
$F(x)=0.6 x^{3}+c$. This curve will pass through $(1,1)$ if $c=0.4$

