Math 1A - Chapter 3 Test - Typical Problems Set Solutions

1. Use the definition of the derivative to compute each of the following limits.
a. $\lim _{x \rightarrow 0} \frac{\left(x^{5}+x+1\right)-1}{x}=\lim _{x \rightarrow 2} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=\left.\left(6 x^{5}+1\right)\right|_{x=0}=1$
b. $\lim _{x \rightarrow 1} \frac{x^{3 x}-8}{x-1}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=f^{\prime}(1)=\left.(\ln 8) 8^{x}\right|_{x=1}=8 \ln 8$
c. $\lim _{x \rightarrow 1 / 3} \frac{2 \cos (\pi x)-1}{x-\frac{1}{3}}=\lim _{x \rightarrow 1 / 3} \frac{f(x)-f\left(\frac{1}{3}\right)}{x-\frac{1}{3}}=f^{\prime}\left(\frac{1}{a}\right)=-\left.2 \pi \sin (\pi x)\right|_{x=\frac{1}{3}}=-\pi \sqrt{3}$
2. Find equations of the lines tangent to the curve $y=\frac{x}{1+x^{2}}$ which are parallel to the line $y-0.48 x=0$. Sketch a graph illustrating these tangencies.
SOLN:
$y^{\prime}=\frac{\left(1+x^{2}\right)-2 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}=0.48=\frac{12}{25} \Leftrightarrow 12\left(1+x^{2}\right)^{2}-25+25 x^{2}=0 \Leftrightarrow 12 x^{4}+$ $49 x^{2}-13=0$

The discriminant of this quadratic is $49^{2}-4(12)(-13)=2401+624=3025=55^{2}$ so the positive solutions are $x^{2}=\frac{-49+55}{24}=\frac{1}{4}$ whence the slope of a tangent line is $0.48=\frac{12}{25}$ when $x= \pm \frac{1}{2}$. The equations label the these tangents below:

3. Newton's law of gravitation says that the magnitude F of the force exerted by a body of mass m on a body of mass M is
$F=\frac{G M m}{r^{2}}$
a. Find $d F / d r$ and write a sentence of two explaining what that means.

SOLN: $\frac{d F}{d r}=-\frac{26 \mathrm{Mm}}{r^{3}}$ is the rate of change in the force of gravitational attraction per change in distance between the masses. Note that $d F / d r$ is negative so F decreases as r increases and that the rate of change is inversely proportional to the cube of r.
4. Use the definition of the derivative to simplify $\frac{d}{d x} \cos (2 x)$.

SOLN:
$\frac{d}{d x} \cos (2 x)=\lim _{h \rightarrow 0} \frac{\cos (2 x+2 h)-\cos (2 x)}{h}=\lim _{h \rightarrow 0} \frac{\cos (2 x) \cos (2 h)-\sin (2 x) \sin (2 h)-\cos (2 x)}{h}=$
$\lim _{h \rightarrow 0} \frac{\cos (2 x)(\cos (2 h)-1)-\sin (2 x) \sin (2 h)}{h}=\cos (2 x) \lim _{h \rightarrow 0} \frac{\cos (2 h)-1}{h}-2 \sin (2 x) \lim _{2 h \rightarrow 0} \frac{\sin (2 h)}{2 h}$

$$
=0-2 \sin (2 x)
$$

5. For what values of x does the graph of $f(x)=x^{3}+6 x^{2}+x+4$ have a horizontal tangent?

SOLN: $f^{\prime}(x)=3 x^{2}+12 x+1=3(x+2)^{2}-11=0 \Leftrightarrow x=-2 \pm \frac{\sqrt{33}}{3}$
6. A curve C is defined by the parametric equations $=\sin (2 t) ; \quad y=2 \cos (t)$.
a. Show that C has two tangent lines at the origin and find their equations.

SOLN: The curve passes through (0,0) when t is any odd multiple of π over 2 : $t=\frac{(2 k+1) \pi}{2}$
The slopes of the tangent lines at $t=\frac{ \pm \pi}{2}$ are $\left.\frac{d y}{d x}\right|_{t= \pm \frac{\pi}{2}}=\left.\frac{\frac{d y}{d t}}{\frac{d x}{d y}}\right|_{t= \pm \frac{\pi}{2}}=\left.\frac{-2 \sin (t)}{2 \cos (2 t)}\right|_{t= \pm \frac{\pi}{2}}= \pm 1$.
Thus the tangent lines are $y= \pm x$.
b. Find the points where the tangent line in the $x-y$ plane is vertical.

SOLN: The tangent line will be vertical when

$$
\begin{aligned}
& \frac{d x}{d t}=0 \Leftrightarrow 2 \cos (2 t)=0 \Leftrightarrow t=\frac{(2 k+1) \pi}{4} . \text { In particular, } \\
& t=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \text { correspond to the points } \\
& (x, y)=(1, \sqrt{2}),(-1,-\sqrt{2}),(1,-\sqrt{2}),(-1, \sqrt{2}) .
\end{aligned}
$$

7. Find an equation for the line tangent to $x^{2} y+x y^{2}=2 x y$ at $(1,1)$.

SOLN: Equate derivatives with respect to x of the left and right sides of the equation: $2 x y+x^{2} \frac{d y}{d x}+y^{2}+2 x y \frac{d y}{d x}=2 y+2 x \frac{d y}{d x}$ and plug in the coordinates for the point of interest:
$2+\frac{d y}{d x}+1+2 \frac{d y}{d x}=2+2 \frac{d y}{d x}$ and solve for $\frac{d y}{d x}=-1$.

Thus the tangent line is $y=2-x$. Note that the equation can be simplified by dividing through by $y \neq 0$ and $x \neq 0: x+y=2$.
That's much simpler, huh?
8. Let $y=\sqrt[3]{x}$
a. Find the differential $d y$.

SOLN: $d y=\frac{d x}{3 \sqrt[3]{x^{2}}}$
b. Evaluate $d y$ and Δy if $x=8$ and $=\Delta x=0.1$

SOLN: $d y=\frac{d x}{3 \sqrt[3]{x^{2}}}=\frac{1}{8}\left(\frac{1}{4}\right)\left(\frac{1}{10}\right)=\frac{1}{120}=0.08 \overline{3}$
c. Estimate $\sqrt[3]{8.1}$ using the line tangent to $=\sqrt[3]{x}$ at $(8,2)$. What is the relative error in your estimation?
SOLN: $\sqrt[3]{8.1} \approx 2+0.08 \overline{3}=2.08 \overline{3}$ The relative error is an overestimation of $\frac{\text { dy }-\Delta y}{y} \approx \frac{0.08 \overline{8}-0.0082986}{2} \approx 1.724 \times 10^{-5}$
9. Find the derivative of the function $f(x)=(\cos (x))^{x}$ by first differentiating $\ln y$ SOLN:
$\frac{y^{\prime}}{y}=\frac{d}{d x} x \ln \cos (x)=\ln \cos (x)-\frac{x \sin (x)}{\cos (x)} \Leftrightarrow y^{\prime}=$ $(\cos (x))^{x} \ln \cos (x)-x \sin (x)(\cos (x))^{x-1}$
10. Consider $f(r)=2 \sqrt{r}-3 \sqrt[3]{r}$
a. Simplify formulas for the first and second derivatives of $f(r)$

$$
\text { SOLN: } f^{\prime}(r)=\frac{1}{\sqrt{r}}-\frac{1}{\sqrt[3]{r^{2}}} \text { and " }(r)=\frac{-1}{2 \sqrt{r^{3}}}+\frac{2}{3 \sqrt[3]{r^{5}}}
$$

b. Find the inflection point for $f(r)$

SOLN: The inflection point is where the second derivative changes sign.

$$
-\frac{1}{2 \sqrt{r^{3}}}+\frac{2}{3 \sqrt[3]{r^{5}}}=0 \Leftrightarrow \frac{r^{-3 / 2}}{2}=\frac{2 r^{-5 / 2}}{3} \Leftrightarrow r^{1 / 6}=\frac{4}{3} \Leftrightarrow r=\left(\frac{4}{3}\right)^{6} \approx 5.62
$$

Note that the change in concavity is barely discernable in the graph:

11. Find equations for the tangent lines to $y=\frac{x+1}{x-1}$ that are parallel to the line $+2 y=17$.

SOLN: $y=\frac{x^{x+1}}{x^{x}-1}=1+\frac{2}{x^{-1}} \Rightarrow y^{y}=-\frac{2^{x-1}}{(x-1)^{2}}$, so the slope of the tangent line is parallel to the given line where $y^{\prime}=-\frac{1}{2} \Leftrightarrow-\frac{2}{(x-1)^{2}}=-\frac{1}{2} \Leftrightarrow(x-1)^{2}=4 \Leftrightarrow x=1 \pm 2 \Leftrightarrow y=1 \pm 1$
Thus the equations for the tangent lines are $y=2-\frac{1}{2}(x-3)$ and $y=-\frac{1}{2}(x+1)$.

12. If $h(9)=3$ and $\hbar^{\prime}(9)=-7$, find $\left.\frac{d}{d x}\left(\frac{h(x)}{x}\right)\right|_{x=9}$

SOLN: $\left.\frac{d}{d x}\left(\frac{h(x)}{x}\right)\right|_{x=9}=\left.\left(\frac{\pi h^{\prime}(x)-h(x)}{x^{2}}\right)\right|_{x=9}=\frac{9(-7)-\mathrm{s}}{9^{2}}=-\frac{22}{27}$
13. In a fish farm, a population of fish is introduced into a pond and harvested regularly. A model for the rate of change of the fish population is given by the equation
$\frac{d P}{d t}=r_{0}\left(1-\frac{P(t)}{P_{\max }}\right) P(t)-H \cdot P(t)$
where r_{0} is the birth rate of the fish, $P_{\max }$ is the maximum population the pond can sustain and H is the proportion of fish harvested in a year. If the pond can sustain a maximum population of 5000 fish, the birth rate is 4% and the harvesting rate is 2%, what (nonzero) population level(s) weill not change, according to the model.
SOLN: The population will not change when $\frac{d P}{d t}=0$. Plugging in the parameter values, $0.04\left(1-\frac{F}{5000}\right) P-0.02 P=0 \Leftrightarrow 0.02 P-0.000008 P^{2}=0$, so either $P=0$ or $P=\frac{0.02}{0.000000}=2500$.
14. The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is $P V=n R T$, where n is the number of moles of the gas and $R=0.0821$ is the gas constant. Suppose that, at a certain instant, $P=8 \mathrm{~atm}$ and is increasing at a rate of 0.14 $\mathrm{atm} / \mathrm{min}$ and $V=11 \mathrm{~L}$ and is decreasing at a rate of $0.17 \mathrm{~L} / \mathrm{min}$. Find the rate of change of T with respect to time at that instant if $n=10$ moles. Round your answer to four decimal places.
SOLN: Equating derivatives of left and right sides of the gas law with respect to t,

$$
\begin{aligned}
n R \frac{d T}{d t}=\frac{d}{d t} P V & =P \frac{d}{d t} V+V \frac{d}{d t} P \Leftrightarrow 0.821 \frac{d}{d t} T=8(-17)+11(0.14)=-136+1.54 \\
& \Leftrightarrow \frac{d}{d t} T=-163.8
\end{aligned}
$$

15. Use the definition of the derivative to compute $\frac{d}{d x} \sec (x)$.

SOLN:

$$
\begin{aligned}
& \frac{d}{d x} \sec (x)=\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec (x)}{h}= \\
& \lim _{h \rightarrow 0} \frac{1}{\sin (x) \operatorname{con}(h)-\sin (x) \sin (h)} \frac{1}{\operatorname{con}(x)}(\cos (x) \cos (h)-\sin (x) \sin (h) \cos (x) \\
& (\cos (x) \cos (h)-\sin (x) \sin (h) \cos (x)
\end{aligned}=, \quad \begin{aligned}
& \cos (x)(1-\cos (h)+\sin (x) \sin (h) \\
& \lim _{h \rightarrow 0} \frac{\cos (x)-(\cos (x) \cos (h)-\sin (x) \sin (h)}{h(\cos (x) \cos (h)-\sin (x) \sin (h) \cos (x)}=\lim _{h \rightarrow 0}^{h(\cos (x) \cos (h)-\sin (x) \sin (h)) \cos (x)}= \\
& \cos (x) \lim _{h \rightarrow 0} \frac{1-\cos (h)}{h}+\sin (x) \lim _{h \rightarrow 0} \frac{\sin (x)}{h(\cos (x) \cos (h)-\sin (x) \sin (h)) \cos (x)}=0+\frac{\sin }{\cos ^{2}(x)}= \\
& \tan (x) \sec (x)
\end{aligned}
$$

16. Show that the curve described by the parametric equations
$x(t)=1-\cos (\pi t) ; y(t)=\sin (3 \pi t)$
has two tangent lines where $t=1 / 2$ and find their equations. Illustrate these in a graph.
SOLN: $x=1 / 2$ means that $1-\cos (\pi t)=\frac{1}{2} \Leftrightarrow \cos (\pi t)=\frac{1}{2} \Leftrightarrow \pi t= \pm \frac{\pi}{3}=2 \pi k$ where $k \in \mathbb{Z}$.
With $k=0, t= \pm \frac{1}{3} \cdot \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 \pi \cos (9 n t)}{\pi \sin (\pi t)}$. At $=\frac{1}{3}, \frac{d y}{d x}=\frac{-8 \pi}{\pi \sqrt{2} / 2}=\frac{-6}{\sqrt{2}}=-2 \sqrt{3}$ so the tangent line has equation $y=-2 \sqrt{3}\left(x-\frac{1}{2}\right)$. At $t=-\frac{1}{3}, \frac{d y}{d x}=\frac{-3 \pi}{-\pi \sqrt{3} / 2}=\frac{6}{\sqrt{3}}=2 \sqrt{3}$ so the tangent line has equation $y=2 \sqrt{3}\left(x-\frac{1}{2}\right)$

17. If $\sqrt{3} \sin (x) \cos (y)=1$, find a formula for $\frac{d y}{d x}$ using implicit differentiation.

SOLN: $\frac{d}{d x} \sqrt{3} \sin (x) \cos (y)=0 \Leftrightarrow \sqrt{3} \cos (x) \cos (y)-\sqrt{3} \sin (x) \sin (y) \frac{d y}{d x}=0 \Leftrightarrow$ $\frac{d y}{d x}=\frac{1}{\tan (x) \tan (y)}$
18. Find $\frac{d^{63}}{d x^{64}}(x \sin (x))$ by finding the first few derivatives and deducing the pattern that occurs.

SOLN:

n	1	2	3	4
$\frac{d^{n}}{d x^{n}}(x \sin x)$	$\sin x+x \cos x$	$2 \cos x-x \sin x$	$-3 \sin x-x \cos x$	$-4 \cos x+x \sin x$
n	5	6	7	8
$\frac{d^{n}}{d x^{n}}(x \sin (x))$	$5 \sin x+x \cos x$	$6 \cos x-x \sin x$	$-7 \sin x-x \cos x$	$-8 \cos x+x \sin x$

Evidently there's a 4 -cycle. Since $63=4 \cdot 15+3$ we look to the third entry in the pattern and deduce that $\frac{d^{63}}{d x^{61}}(x \sin (x))=-63 \sin x-x \cos x$
19. Use logarithmic differentiation to find the derivative of $y=(\sec x)^{x}$

SOLN:
$\frac{d}{d x} \ln y=\frac{y^{\prime}}{y}=\frac{d}{d x}(x \ln \sec x)=\ln \sec x+x\left(\frac{\sec x \tan x}{\sec x}\right)=\ln \sec x+x\left(\frac{\sec x \tan x}{\sec x}\right)=$
$x \tan x-\ln \cos x$
so that $y^{\prime}=x(\sec x)^{x} \tan x-(\sec x)^{x} \ln \cos x$
20. Verify the given linearization $\ln |x=\mathbb{1}| \approx x$ at $a=0$. Then determine the values of x for which the linear approximation is accurate to within 0.1
SOLN: Near $x=0, f(x) \approx f(0)+f^{\prime}(0)(x-0)=0+1 \cdot x=x$. To find where the error in approximation is no more than 0.1 , solve $\lfloor\ln |x+1|-x \mid \leq 0.1 \Leftarrow-0.3832 \leq x \leq 0.5162$ Of course you'd need a calculator (say the TI85) to find the roots of $y 1=a b s(x-\ln (a b s(x+1)))-0.1$:

21. Find an equation for the line tangent to $y=\tan ^{-1}(\sin x)$ where $x=0$.

SOLN: The point of tangency is at the origin since $y=\tan ^{-1}(\sin 0)=\tan ^{-1} 0=0$. The slope is $\left.\frac{d y}{d x}\right|_{x=0}=\frac{d}{d x} \sin x \frac{d}{d x} \tan ^{-1} u=\left.\cos x \frac{1}{1+\sin ^{2} x}\right|_{x=0}=1$. So the tangent line is $y=x$.

This seems quite reasonable, given the graph of $y=\tan ^{-1}(\sin x)$ here:

22. Find an equation of the tangent line to the parametric curve $x=e^{\sqrt{t}}, y=-t^{6}+t$

At the point corresponding to $t=1$.
SOLN: The point of tangency has coordinates $(e, 0)$ and the slope is $\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{d y / d t}{d x / d t}\right|_{t=1}=\left.\frac{-6 t^{5}+1}{\varepsilon \sqrt{d} / 2 \sqrt{2}}\right|_{t=1}=-\frac{5}{\varepsilon / 2}=-\frac{10}{\varepsilon}$, so the equation is $y=-\frac{10}{e}(x-e)=10-\frac{10 x}{e}$
23. Find $y^{\prime \prime}$ if $x^{8}+y^{8}=1$.

SOLN: Differentiating implicitly, $8 x^{7}+8 y^{7} y^{\prime}=0 \Leftarrow y^{\prime}=-\frac{x^{7}}{y^{7}} \Rightarrow$
$y^{\prime \prime}=-\frac{7 y^{7} x^{6}-7 x^{7} y^{6} y^{8}}{y^{14}}=-\frac{7 y^{7} x^{6}+x^{7} y^{6}\left(\frac{x^{7}}{7}\right)}{y^{14}}=-\frac{7 x^{6}\left(x^{8}+y^{8}\right)}{y^{15}}=-\frac{7 x^{6}}{y^{15}}$
24. Find an equation for the line tangent to the curve $y^{3}+3 x^{2} y+x^{3}=15$ at $(1,2)$.

SOLN: $3 y^{2} \frac{d y}{d x}+6 x y+3 x^{2} \frac{d y}{d x}+3 x^{2}=0$ and substituting $(1,2)$ for (x, y) we have
$12 \frac{d y}{d x}+12+3 \frac{d y}{d x}+3=0 \Leftrightarrow y^{\prime}=-1$ so the tangent line is $y=2-(x-1)=3-x$
As a bonus, check out the graph illustrating the line tangent to the curve:

25. Use implicit differentiation to find an equation of the line tangent to $y^{2} \cos \left(\frac{\pi x}{8}\right)=x y-8$ at (4,2).
SOLN: Equating derivatives of left and right sides,
$2 y \frac{d y}{d x} \cos \left(\frac{\pi x}{8}\right)-\frac{\pi y^{2}}{8} \sin \left(\frac{\pi x}{8}\right)=y+x \frac{d y}{d x}$ and plugging in the given coordinates we have $0-\frac{\pi}{2}=2+4 \frac{d y}{d x} \Leftrightarrow \frac{d y}{d x}=-\frac{4+\pi}{8}$ so the tangent line is $y=2-\frac{4+\pi}{8}(x-4)$
26. At what point on the curve $y=12 x^{2 / 3}-4 x$ is the tangent line horizontal?

SOLN: $\frac{d y}{d x}=8 x^{-1 / 3}-4=0 \Leftrightarrow x=8$ where $y=16$. Here's a graph:

27. Derive a simple formula for the derivative $\frac{d}{d x} \sinh ^{-1} x$

SOLN: Note first that $y=\sinh ^{-1} x \Leftrightarrow x=\sinh y$. Then consider the basic identity for the hyperbolic sine $\cosh ^{2} y=1+\sinh ^{2} y=1+x^{2}$ so $\frac{d y}{d x}=\frac{1}{d x / d y}=\frac{1}{\cosh y}=\frac{1}{\sqrt{1+x^{2}}}$.
28. Find the points on the hyperbola $x^{2}-2 y^{2}=1$ where the tangent line has slope $=2$.

SOLN: Differentiating implicitly, $2 x-4 y \frac{d y}{d x}=0$. Substituting 2 for the slope and solving for y we have $x=4 y$. Substituting this into the equation, we have $16 y^{2}-2 y^{2}=1 \Leftrightarrow y= \pm \frac{\sqrt{14}}{14} \Leftrightarrow x=\frac{2 \sqrt{14}}{7}$ i.e. at $\left(-\frac{2 \sqrt{14}}{7}, \frac{\sqrt{14}}{14}\right),\left(\frac{2 \sqrt{14}}{7},-\frac{\sqrt{14}}{14}\right)$.
Here's a graph illustrating this:

29. Let $x=\sin 4 t-\cos t$
$y=\cos 3 t-\sin t$.
a. Find $\frac{d y}{d x}$ as a function of t.

SOLN: $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-3 \sin 3 t-\cos t}{4 \cos 4 t+\sin t}$
b. Find $\frac{d^{2} y}{d x^{2}}$ as a function of t.

SOLN:

$$
\begin{aligned}
\frac{d}{d x} \frac{d y}{d x} & =\frac{d t}{d x} \frac{d}{d t} \frac{d y}{d x}=\frac{\frac{d}{d t} \frac{d y}{d x}}{\frac{d x}{d t}}=\frac{\frac{d}{d t} \frac{-3 \sin 3 t-\cos t}{4 \cos 4 t+\sin t}}{4 \cos 4 t+\sin t} \\
& =\frac{(4 \cos 4 t+\sin t)(-9 \cos 3 t+\sin t)-(-16 \sin 4 t+\cos t)(-3 \sin 3 t-\cos t)}{(4 \cos 4 t+\sin t)^{3}} \\
& =\frac{1-36 \cos 4 t \cos 3 t+4 \cos 4 t \sin t-9 \cos 3 t \sin t-48 \sin 4 t \sin 3 t-16 \sin 4 t \cos t+}{(4 \cos 4 t+\sin t)^{3}}
\end{aligned}
$$

30. Find a parabola that passes through $(1,10)$ and whose tangent lines at $x=-2$ and $x=1$ have
slopes -5 and 7 , respectively.
SOLN: Let $y=a x^{2}+b x+c$ so that $y^{\prime}=2 a x+b$. First substitute into this second form to get the 2 X 2 system $\begin{aligned}-4 a+b & =-5 \\ 2 a+b & =7\end{aligned}$ whose solution is $a=2$ and $b=3$. Now use the information about what point lies on the parabola to solve for c : $10=a+b+c=2+3+c \Rightarrow c=5$. Thus $y=2 x^{2}+3 x+5$ is the parabola we seek.
31. The figure shows a lamp located 31 units to the right of the y-axis and a shadow created by the elliptical region $x^{2}+8 y^{2} \leq 9$. If the point $(-9,0)$ is on the edge of the shadow, how far above the x-axis is the lamp located?

SOLN: The coordinates of the lamp are $(31, h)$ and the upper shadow line has slope $m=\frac{h}{40}$ so that the line tangent to the top of the ellipse at $\left(a, \frac{1}{4} \sqrt{18-2 a^{2}}\right)$. We can find the slope in terms of a by differentiating implicitly and also using the rise over run formula:

$$
2 a+16\left(\frac{1}{4} \sqrt{18-2 a^{2}}\right) m=0 \Leftrightarrow m=\frac{-a}{2 \sqrt{18-2 a^{2}}}=\frac{\sqrt{18-2 a^{2}}}{4(a+9)}
$$

This gives an equation we can solve for a : $-4 a^{2}-18 a=18-2 a^{2} \Leftrightarrow a=-1$
So that the slope is $\frac{h}{40}=\frac{1}{8} \Leftrightarrow h=5$
32. Find an equation for the line tangent to the curve described by the parametric equations $\begin{aligned} & x=\sin (3 t)-\cos t \\ & y=\cos (3 t)-\sin t\end{aligned}$ where $t=\frac{\pi}{6}$.

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{t=\frac{\pi}{6}} & =\left.\frac{-3 \sin (3 t)-\cos t}{3 \cos (3 t)+\sin t}\right|_{t=\frac{\pi}{6}} \\
\text { SOLN: } \quad & =\frac{-3 \sin \left(\frac{\pi}{2}\right)-\cos \left(\frac{\pi}{6}\right)}{3 \cos \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{6}\right)} \\
& =\frac{-3-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-6-\sqrt{3}
\end{aligned}
$$

Also, at $t=\frac{\pi}{6},(x, y)=\left(1-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
so that $y+\frac{1}{2}=-(6+\sqrt{3})\left(x-1+\frac{\sqrt{3}}{2}\right)$
is an equation for the tangent line we seek.

33. A particle moves on a horizontal line so that its coordinate at time t is $x=e^{-t / 4} \cos (2 t)$.
a. Find the velocity and acceleration functions.

$$
\begin{aligned}
v & =\frac{d x}{d t}=-\frac{1}{4} e^{-t / 4} \cos (2 t)-2 e^{-t / 4} \sin (2 t)=-\frac{e^{-t / 4}}{4}(\cos (2 t)+8 \sin (2 t)) \\
& =-\frac{\sqrt{65} e^{-t / 4}}{4} \sin \left(2 t+\arctan \frac{1}{8}\right) \\
a & =\frac{d v}{d t}=\frac{e^{-t / 4}}{16}(\cos (2 t)+8 \sin (2 t))+\frac{e^{-t / 4}}{4}(2 \sin (2 t)-16 \cos (2 t)) \\
& =\frac{e^{-t / 4}}{16}(16 \sin (2 t)-63 \cos (2 t)) \\
& =\frac{65 e^{-t / 4}}{16} \sin \left(2 t-\arctan \frac{63}{16}\right)
\end{aligned}
$$

Here are graphs for these:

The initial velocity is negative and decreasing, so the initial acceleration is negative.
b. Find the distance the particle travels in the time $0 \leq t \leq \pi$.

SOLN: From the graphs of x, v, and a shown above it is clear that the position x
starts out positive and moving to the left and then somewhere near $t=1.5$ has achieved a negative position but stopped moving left and is starting to move right. It continues moving right until near where $t=3$ where is starts moving left again for a bit. To determine the places where the particle turns around, we solve $v=0$:

$$
\begin{aligned}
& -\frac{\sqrt{65} e^{-t / 4}}{4} \sin \left(2 t+\arctan \frac{1}{8}\right)=0 \Leftrightarrow 2 t+\arctan \frac{1}{8}=\text { some multiple of } \pi \\
& 2 t+\arctan \frac{1}{8}=\pi \text { or } 2 \pi \Rightarrow
\end{aligned}
$$

That is,

$$
t=\frac{\pi}{2}-\frac{1}{2} \arctan \frac{1}{8} \text { or } \pi-\frac{1}{2} \arctan \frac{1}{8}
$$

So the extreme left/right positions of x are at $x(0)=1$,

$$
\begin{aligned}
x\left(\frac{\pi}{2}-\frac{1}{2} \arctan \frac{1}{8}\right) & =\exp \left(\frac{1}{8} \arctan \frac{1}{8}-\frac{\pi}{8}\right) \cos \left(\pi-\arctan \frac{1}{8}\right) \\
& =-\frac{8}{\sqrt{65}} \exp \left(\frac{1}{8} \arctan \frac{1}{8}-\frac{\pi}{8}\right) \approx-0.6805 \\
x\left(\pi-\frac{1}{2} \arctan \frac{1}{8}\right) & =\exp \left(\frac{1}{8} \arctan \frac{1}{8}-\frac{\pi}{4}\right) \cos \left(2 \pi-\arctan \frac{1}{8}\right) \\
& =\frac{8}{\sqrt{65}} \exp \left(\frac{1}{8} \arctan \frac{1}{8}-\frac{\pi}{4}\right) \approx 0.4595
\end{aligned}
$$

Finally, $x(\pi)=e^{-\pi / 4} \approx 0.4559$ so the object travels about
$(1+0.6805)+(0.4595+0.6805)+(0.4595-0.4559)=2.8241$
c. When is the particle speeding up? When is it slowing down?

SOLN: The particle is speeding up when the acceleration and the velocity are in the same direction. This is true initially, and continues to be true until

$$
a=\frac{65 e^{-t / 4}}{16} \sin \left(2 t-\arctan \frac{63}{16}\right)=0 \Rightarrow 2 t-\arctan \frac{63}{16}=0 \Leftrightarrow t=\frac{1}{2} \arctan \frac{63}{16} \approx 0.6610
$$

Then again when

$$
v=-\frac{\sqrt{65} e^{-t / 4}}{4} \sin \left(2 t+\arctan \frac{1}{8}\right)=0 \Leftarrow 2 t+\arctan \frac{1}{8}=\pi \Leftrightarrow t=\frac{\pi}{2}-\frac{1}{2} \arctan \frac{1}{8} \approx 1.509
$$ it starts speeding up in the positive direction until the acceleration becomes negative again at $t=\frac{\pi}{2}+\frac{1}{2} \arctan \frac{63}{16} \approx 2.2318$ - then there's a little interval at the end when a and v are both negative after $t=\pi-\frac{1}{2} \arctan \frac{1}{8} \approx 3.079$

Summing up, the particle is speeding up on this union of intervals:

$$
\left(0, \frac{1}{2} \arctan \frac{63}{16}\right) \cup\left(\frac{\pi}{2}-\frac{1}{2} \arctan \frac{1}{8}, \frac{\pi}{2}+\frac{1}{2} \arctan \frac{63}{16}\right) \cup\left(\pi-\frac{1}{2} \arctan \frac{1}{8}, \pi\right)
$$

34. Consider $f(x)=\sqrt[3]{999+x^{3}}$
d. Find the linearization of at $x=9$ and use it to approximate $\sqrt[3]{1999}$.

SOLN:

$$
f(x) \approx f(9)+f^{\prime}(9)(x-9)=\sqrt[3]{999+9^{3}}+\frac{9^{2}}{\left(999+9^{3}\right)^{2 / 3}}(x-9)=12+\frac{9}{16}(x-9)
$$

When $x=10, f(10)=\sqrt[3]{1999} \approx 12+\frac{9}{16}=\frac{201}{16}=12.5625$
e. What is the \% error in your approximation?

$$
\text { SOLN: } \frac{\Delta y}{y}=\frac{f(10)-f(9)}{f(9)} \approx 0.0498 \approx \frac{d y}{y}=\frac{f^{\prime}(9) d x}{f(9)}=\frac{9 / 16}{12}=\frac{3}{64}=0.046875
$$

35. Find the coordinates of the points where a line through $(0,3)$ is tangent to the unit circle. SOLN: The point of tangency is on the upper half of the circle so its coordinates have the form (x, y)
So the slope of a line connecting this point with $(0,3)$ must be $\frac{y-3}{x-0}$. The slope of a line tangent to the unit circle can also be found by implicit differentiation:
$2 x+2 y y^{\prime}=0 \Leftrightarrow y^{\prime}=-\frac{x}{y}$ so $\frac{y-3}{x}=-\frac{x}{y} \Leftrightarrow x^{2}+y^{2}=3 y$. Since the point is on the unit circle, this means that $1=3 y \Leftrightarrow y=\frac{1}{3} \Leftrightarrow x^{2}=\frac{8}{9} \Leftrightarrow x= \pm \frac{2 \sqrt{2}}{3}$.
The points are thus $\left(\pm \frac{2 \sqrt{2}}{3}, \frac{1}{3}\right)$.

