Math 1A - Final Exam Solutions - Fall '04

1. The graph below shows $y=f(x)$.
a. State, with reasons, the numbers a at which $\lim _{x \rightarrow a} f(x)$ does not exist.

SOLN: The limit does not exist at $\boldsymbol{a}=\mathbf{- 3}$ since the limit from the left is 1 while the limit from the right is -1 . Also, the limit does not exist at $\boldsymbol{a}=\mathbf{2}$ since the value of f is unbounded above both from the left and the right.
b. State where the function is discontinuous and classify the discontinuity as removable, jump or asymptote.
SOLN: There is a jump discontinuity at $\boldsymbol{a}=\mathbf{- 3}$, a removable discontinuity at $\boldsymbol{a}=\mathbf{1}$ and a vertical asymptote discontinuity at $\boldsymbol{a}=\mathbf{2}$.
c. State, with reasons, the numbers at which the function is not differentiable.

SOLN: The function is not differentiable where $\boldsymbol{a}=\mathbf{- 3}, \mathbf{1}$ and $\mathbf{2}$, since these are discontinuities. The function is not differentiable at $\boldsymbol{a}=\mathbf{- 2}$ since the slope is 0 as approached from the left and 2 as approached from the right. The function is no differentiable at $\boldsymbol{a}=\mathbf{- 1}$ since the slope is a constant 2 as approached from the left while the slope approaches some negative value from the right. The function is not differentiable at $\boldsymbol{a}=\mathbf{0}$ since the tangent line is vertical there.

2. Suppose $f(x)$ is a function such that for all $x>1, \frac{2}{\pi} \arctan x<f(x)<\frac{x+1}{x-1}$.

What is $\lim _{x \rightarrow \infty} f(x)$? Why?
SOLN: Since $\lim _{x \rightarrow \infty} \frac{2}{\pi} \arctan x=1^{-}$approaches 1 from below and $\lim _{x \rightarrow \infty} \frac{x+1}{x-1}=1^{+}$approaches 1 from above, we can conclude that a function caught between these must also converge to 1 .
3. Sketch a graph for a function that meets the given conditions:
$f(0)=0, \quad f^{\prime}(-4)=f^{\prime}(0)=f^{\prime}(4)=0$
$f^{\prime}(x)<0$ on $(-\infty,-4) \cup(-4,0) \cup(4, \infty)$
$f^{\prime \prime}(x)>0$ on $(-\infty,-4) \cup(-2,2) \cup(6, \infty)$

4. The graph of $f^{\prime}(x)$ is shown below.

a. Sketch a graph for $f^{\prime \prime}(x)$. SOLN:

b. Sketch a possible graph for $f(x)$.

SOLN (note that only the essential ingredients of increasing/decreasing and concave up/down are important to show here):

5. Find a linear approximation for the function $f(x)=\sin \left(x+\frac{\pi}{3}\right)$ at $a=0$ and use it to approximate $f(-0.14)$.
SOLN: In a neighborhood of $x=0, f(x)=f(0)+f^{\prime}(0) x=\frac{\sqrt{3}}{2}+\frac{x}{2}$ so that $f(-0.14)=\frac{\sqrt{3}}{2}-\frac{0.14}{2} \approx 0.796$
6. Find the slope of the line tangent to the curve $x^{2} \cos y+\sin 2 y=x y$ at $(x, y)=\left(0, \frac{\pi}{2}\right)$. SOLN: Assuming y is a function of x and equating derivatives,

$$
\frac{d}{d x}\left(x^{2} \cos y+\sin 2 y\right)=\frac{d}{d x}(x y)
$$

$2 x \cos y-x^{2} \sin y \frac{d y}{d x}+2 \cos (2 y) \frac{d y}{d x}=y+x \frac{d y}{d x}$
Plugging in the given values: $0-0+2 \cos (\pi) \frac{d y}{d x}=\frac{\pi}{2}+0 \Leftrightarrow \frac{d y}{d x}=-\frac{\pi}{4}$
7. Find an equation for the line tangent to $y=e^{\sin 3 x}$ at $x=\frac{\pi}{3}$.

SOLN: Here $y=e^{\sin \pi}=1$ and the slope is $\left.y\right|_{x=\pi / 3}=\left.3 \cos 3 x e^{\sin 3 x}\right|_{x=\pi / 3}=-3$ so the equation could be $y-1=-3\left(x-\frac{\pi}{3}\right) \Leftrightarrow y=-3 x+\pi+1$
8. At what point on the curve $y=[\ln (x+4)]^{2}$ is the tangent line horizontal?

SOLN: $y^{\prime}=\frac{2[\ln (x+4)]}{x+4}=0 \Leftrightarrow \ln (x+4)=0 \Leftrightarrow x=-3$
9. Find the local and global extreme values of the function $y=x^{3} e^{-x^{2}}$ on the interval $[-1,2]$.

SOLN:
$y^{\prime}=3 x^{2} e^{-x^{2}}-2 x^{4} e^{-x^{2}}=x^{2} e^{-x^{2}}\left(3-2 x^{2}\right)=0 \Leftrightarrow x= \pm \sqrt{\frac{3}{2}}$
or $x=0$. Since $y^{\prime}<0$ only on $\left(-\infty,-\sqrt{\frac{3}{2}}\right) \cup\left(\sqrt{\frac{3}{2}, \infty}\right)$,
y has a global min at the left endpoint $x=-1$ and a local min where $x=2$. y has a global max where $x=\sqrt{\frac{3}{2}}$. There is an inflection point where $x=0$, but since y is increasing both before and after this point, there is no max nor min at the origin.
10. Find the point on the hyperbola $x y=16$ that is closest to the point $(4,0)$.

SOLN: A point on the hyperbola can be described by $\left(x, \frac{16}{x}\right)$.
The square of the distance from $(4,0)$ to that point is
$D^{2}=(x-4)^{2}+\left(\frac{16}{x}-0\right)^{2}=x^{2}-8 x+16+\frac{256}{x^{2}}$. Differentiating,
$2 D \frac{d D}{d x}=2 x-8-\frac{512}{x^{3}}=\frac{2 x^{4}-8 x^{3}-512}{x^{3}}=0 \Leftrightarrow x^{4}-4 x^{3}-256=0$

Sketching both the square of the distance and its rate of change per change in x and using the calculator to find the zero of the latter, we see the distance is minimized where $x=5.52111$, whence $y=16 / 5.52111=2.898$.
11. Evaluate the limit: $\lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}$.

SOLN: Since both the numerator and the denominator are differentiable functions approaching zero, $\lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}=\lim _{x \rightarrow 0} \frac{a e^{a x}-b e^{b x}}{1}=a-b$
12. The velocity of a wave of length L in deep water is $v=k \sqrt{\frac{L}{C}+\frac{C}{L}}$ where k and C are known positive constants. What is the length of the wave that gives the minimum velocity?
SOLN: $\frac{d v}{d L}=\frac{k}{2}\left(\frac{L}{C}+\frac{C}{L}\right)^{-1 / 2}\left(\frac{1}{C}-\frac{C}{L^{2}}\right)=0 \Leftrightarrow \frac{1}{C}=\frac{C}{L^{2}} \Rightarrow L=C$
13. What is the maximum slope of a line connecting the origin $(0,0)$ with a point on the parabola $y=1-(x-2)^{2}$?
SOLN: $m(x)=\frac{1-(x-2)^{2}-0}{x-0}=-x+4-\frac{3}{x} \Rightarrow m^{\prime}(x)=-1+\frac{3}{x^{2}}=0 \Leftrightarrow x= \pm \sqrt{3}$. These correspond to the local max at $(\sqrt{3}, 4-2 \sqrt{3})$ and a local min at $(-\sqrt{3}, 4+2 \sqrt{3})$, but the slope is unbounded above, as seen by looking at $\lim _{x \rightarrow 0^{-}} m(x)=-x+4-\frac{3}{x}=\infty$.
14. Show that the y-coordinate of the point (x, y) on the curve described by $\frac{x^{2}+1}{\ln \left(y^{2}+4\right)}=1$ that is closest to the point $(0,2)$ can be found by solving $2 y^{3}-4 y^{2}+10 y-16=0$. Use Newton's method to solve the equation. Hint: Minimizing the distance D is equivalent to minimizing the square of the distance, D^{2}. Also, the curve has origin symmetry, so you can just work with the distance in the first quadrant.
SOLN: $\frac{x^{2}+1}{\ln \left(y^{2}+4\right)}=1 \Leftrightarrow x^{2}=-1+\ln \left(y^{2}+4\right)$. If (x, y) is a point on this curve then the square of the distance from (x, y) to $(0,2)$ is $D^{2}=(x-0)^{2}+(y-2)^{2}=-1+\ln \left(y^{2}+4\right)+(y-2)^{2}$.
Differentiating, $2 D \frac{d D}{d y}=\frac{2 y}{y^{2}+4}+2(y-2)$, and setting the derivative to zero, $\frac{2 y+2(y-2)\left(y^{2}+4\right)}{y^{2}+4}=\frac{2 y^{3}-4 y^{2}+10 y-16}{y^{2}+4}=0$ and setting the numerator to zero yields the desired equation. On the TI Voyage 200, you can write a program for Newton's method (shown at left below). Calling "Newton(1)" yields the output in the screenshot at right.
: Prothode (Exact /AFProx", "AFPROXIMATE")
: \rightarrow arst.

,
1.15217
1.75217
2.
1.77777777778
1.75246603387
1.75217181893
1.75217177686
$\frac{1.75217177888}{\text { HiAl }}$

15. A metal storage tank with volume V is to be constructed in the shape of a right circular cylinder with a hemispherical top. What radius and height will require the least amount of metal?
SOLN: The volume is fixed at $V=\pi r^{2} h+\frac{2}{3} \pi r^{3}$. Solving for h : $h=\frac{3 V-2 \pi r^{3}}{3 \pi r^{2}}=\frac{V}{\pi r^{2}}-\frac{2 r}{3}$. Now the surface area is $S=2 \pi r h+2 \pi r^{2}=2 \pi r(h+r)$. Substituting for h in terms of r : $S=2 \pi r h+2 \pi r^{2}=2 \pi r\left(\frac{V}{\pi r^{2}}+\frac{r}{3}\right)=\frac{2 V}{r}+\frac{2 \pi r^{2}}{3}$

Setting the derivative to zero: $S^{\prime}(r)=\frac{4 \pi r}{3}-\frac{2 V}{r^{2}}=0 \Leftrightarrow 2 \pi r^{3}=3 V \Leftrightarrow r=\sqrt[3]{\frac{3 V}{2 \pi}}$

