Math 1A – Final Exam Solutions – Fall '04

1. The graph below shows y = f(x).

a. State, with reasons, the numbers a at which $\lim_{x \to a} f(x)$ does not exist.

SOLN: The limit does not exist at a = -3 since the limit from the left is 1 while the limit from the right is -1. Also, the limit does not exist at a = 2 since the value of *f* is unbounded above both from the left and the right.

b. State where the function is discontinuous and classify the discontinuity as removable, jump or asymptote.
 SOLN: There is a jump discontinuity at *a* = -3, a removable discontinuity at *a* = 1 and a

vertical asymptote discontinuity at a = 2.

c. State, with reasons, the numbers at which the function is not differentiable.
SOLN: The function is not differentiable where *a* = -3, 1 and 2, since these are *discontinuities*. The function is not differentiable at *a* = -2 since the slope is 0 as approached from the left and 2 as approached from the right. The function is no differentiable at *a* = -1 since the slope is a constant 2 as approached from the left while the slope approaches some negative value from the right. The function is not differentiable at *a* = 0 since the tangent line is vertical there.

2. Suppose f(x) is a function such that for all x > 1, $\frac{2}{\pi} \arctan x < f(x) < \frac{x+1}{x-1}$. What is $\lim_{x \to \infty} f(x)$? Why?

SOLN: Since $\lim_{x\to\infty} \frac{2}{\pi} \arctan x = 1^-$ approaches 1 from below and $\lim_{x\to\infty} \frac{x+1}{x-1} = 1^+$ approaches 1 from above, we can conclude that a function caught between these must also converge to 1.

3. Sketch a graph for a function that meets the given conditions:

4. The graph of f'(x) is shown below.

b. Sketch a possible graph for f(x).

SOLN (note that only the essential ingredients of increasing/decreasing and concave up/down are important to show here):

5. Find a linear approximation for the function $f(x) = \sin\left(x + \frac{\pi}{3}\right)$ at a = 0 and use it to approximate f(-0.14).

SOLN: In a neighborhood of x = 0, $f(x) = f(0) + f'(0)x = \frac{\sqrt{3}}{2} + \frac{x}{2}$ so that

$$f(-0.14) = \frac{\sqrt{3}}{2} - \frac{0.14}{2} \approx 0.796$$

6. Find the slope of the line tangent to the curve $x^2 \cos y + \sin 2y = xy$ at $(x, y) = \left(0, \frac{\pi}{2}\right)$. SOLN: Assuming y is a function of x and equating derivatives,

$$\frac{d}{dx} \left(x^2 \cos y + \sin 2y \right) = \frac{d}{dx} \left(xy \right)$$

$$2x \cos y - x^2 \sin y \frac{dy}{dx} + 2\cos(2y) \frac{dy}{dx} = y + x \frac{dy}{dx}$$
Plugging in the given values: $0 - 0 + 2\cos(\pi) \frac{dy}{dx} = \frac{\pi}{2} + 0 \Leftrightarrow \frac{dy}{dx} = -\frac{\pi}{4}$

- 7. Find an equation for the line tangent to $y = e^{\sin 3x}$ at $x = \frac{\pi}{3}$. SOLN: Here $y = e^{\sin \pi} = 1$ and the slope is $y'|_{x=\pi/3} = 3\cos 3x e^{\sin 3x}|_{x=\pi/3} = -3$ so the equation could be $y-1=-3\left(x-\frac{\pi}{3}\right) \Leftrightarrow y=-3x+\pi+1$
- 8. At what point on the curve $y = \left[\ln(x+4)\right]^2$ is the tangent line horizontal? SOLN: $y' = \frac{2\left[\ln(x+4)\right]}{x+4} = 0 \Leftrightarrow \ln(x+4) = 0 \Leftrightarrow \boxed{x=-3}$

9. Find the local and global extreme values of the function $y = x^3 e^{-x^2}$ on the interval [-1,2].

SOLN:

$$y' = 3x^{2}e^{-x^{2}} - 2x^{4}e^{-x^{2}} = x^{2}e^{-x^{2}}(3-2x^{2}) = 0 \Leftrightarrow x = \pm\sqrt{\frac{3}{2}}$$
or $x = 0$. Since $y' < 0$ only on $\left(-\infty, -\sqrt{\frac{3}{2}}\right) \cup \left(\sqrt{\frac{3}{2}}, \infty\right)$,

y has a global min at the left endpoint x = -1 and a local min where x = 2. y has a global max where $x = \sqrt{\frac{3}{2}}$. There is an inflection point where x = 0, but since *y* is increasing both before and after this point, there is no max nor min at the origin.

10. Find the point on the hyperbola xy = 16 that is closest to the point (4,0).

SOLN: A point on the hyperbola can be described by $\left(x, \frac{16}{x}\right)$. The square of the distance from (4,0) to that point is $D^2 = (x-4)^2 + \left(\frac{16}{x}-0\right)^2 = x^2 - 8x + 16 + \frac{256}{x^2}$. Differentiating, $2D\frac{dD}{dx} = 2x - 8 - \frac{512}{x^3} = \frac{2x^4 - 8x^3 - 512}{x^3} = 0 \Leftrightarrow x^4 - 4x^3 - 256 = 0$

Sketching both the square of the distance and its rate of change per change in *x* and using the calculator to find the zero of the latter, we see the distance is minimized where x = 5.52111, whence y = 16/5.52111 = 2.898.

11. Evaluate the limit: $\lim_{x\to 0} \frac{e^{ax} - e^{bx}}{x}$.

SOLN: Since both the numerator and the denominator are differentiable functions

approaching zero,
$$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x} = \lim_{x \to 0} \frac{ae^{ax} - be^{bx}}{1} = a - b$$

- 12. The velocity of a wave of length *L* in deep water is $v = k \sqrt{\frac{L}{C} + \frac{C}{L}}$ where *k* and *C* are known positive constants. What is the length of the wave that gives the minimum velocity? SOLN: $\frac{dv}{dL} = \frac{k}{2} \left(\frac{L}{C} + \frac{C}{L}\right)^{-1/2} \left(\frac{1}{C} - \frac{C}{L^2}\right) = 0 \Leftrightarrow \frac{1}{C} = \frac{C}{L^2} \Rightarrow L = C$
- 13. What is the maximum slope of a line connecting the origin (0,0) with a point on the parabola $y = 1 (x-2)^2$?
 - SOLN: $m(x) = \frac{1 (x 2)^2 0}{x 0} = -x + 4 \frac{3}{x} \Rightarrow m'(x) = -1 + \frac{3}{x^2} = 0 \Leftrightarrow x = \pm \sqrt{3}$. These correspond to the local max at $(\sqrt{3}, 4 2\sqrt{3})$ and a local min at $(-\sqrt{3}, 4 + 2\sqrt{3})$, but the slope is unbounded above, as seen by looking at $\lim_{x \to 0^-} m(x) = -x + 4 \frac{3}{x} = \infty$.
- 14. Show that the *y*-coordinate of the point (x,y) on the curve described by $\frac{x^2+1}{\ln(y^2+4)} = 1$ that is

closest to the point (0,2) can be found by solving $2y^3 - 4y^2 + 10y - 16 = 0$. Use Newton's method to solve the equation. *Hint*: Minimizing the distance *D* is equivalent to minimizing the square of the distance, D^2 . Also, the curve has origin symmetry, so you can just work with the distance in the first quadrant.

SOLN: $\frac{x^2+1}{\ln(y^2+4)} = 1 \Leftrightarrow x^2 = -1 + \ln(y^2+4)$. If (x,y) is a point on this curve then the square

of the distance from (x,y) to (0,2) is $D^2 = (x-0)^2 + (y-2)^2 = -1 + \ln(y^2 + 4) + (y-2)^2$.

Differentiating, $2D\frac{dD}{dy} = \frac{2y}{y^2 + 4} + 2(y - 2)$, and setting the derivative to zero,

 $\frac{2y+2(y-2)(y^2+4)}{y^2+4} = \frac{2y^3-4y^2+10y-16}{y^2+4} = 0$ and setting the numerator to zero yields the

desired equation. On the TI Voyage 200, you can write a program for Newton's method (shown at left below). Calling "Newton(1)" yields the output in the screenshot at right.

Control I/O Var Find Mode	winningstona Cate Other PromIO Class Up
:newton(a)	1.75217
Prgm	1,75217
<pre>setMode("Exact/Approx","APPROXIMATE")</pre>	
∶a→anxt	1.75217
:a−y1(a)/(α(y1(x),x)) x=a→a	2.
Disp a	4 7777777777
While abs((a-anxt)/a))1.E12	1.///////8
a⇒anxt	1.75246603387
a_y1(a)/(α(y1(x),x)) x=a⇒a	1 75017101007
Ulsp a	1.75217181805
EndWhile	1.75217177888
<pre>isetMode("Exact/Hpprox","HUIU")</pre>	1 75217177000
MHIN KHO HUTO FUNC	MHIN RHD HUTD FUNC 7730

15. A metal storage tank with volume V is to be constructed in the shape of a right circular cylinder with a hemispherical top. What radius and height will require the least amount of metal?

SOLN: The volume is fixed at $V = \pi r^2 h + \frac{2}{3}\pi r^3$. Solving for *h*: $h = \frac{3V - 2\pi r^3}{3\pi r^2} = \frac{V}{\pi r^2} - \frac{2r}{3}$. Now the surface area is $S = 2\pi r h + 2\pi r^2 = 2\pi r (h+r)$. Substituting for *h* in terms of *r*: $S = 2\pi r h + 2\pi r^2 = 2\pi r \left(\frac{V}{\pi r^2} + \frac{r}{3}\right) = \frac{2V}{r} + \frac{2\pi r^2}{3}$

Setting the derivative to zero: $S'(r) = \frac{4\pi r}{3} - \frac{2V}{r^2} = 0 \Leftrightarrow 2\pi r^3 = 3V \Leftrightarrow r = \sqrt[3]{\frac{3V}{2\pi}}$

