Math 1A - Final Exam Solutions - spring '07

1. The graph below shows $y=f(x)$.
a. State, with reasons, the numbers a at which $\lim _{x \rightarrow a} f(x)$ does not exist.

SOLN: $\lim _{x \rightarrow-1} f(x)$ does not exist since there's a jump discontinuity from $y=1$ to $y=3$ there. Also, $\lim _{x \rightarrow 2} f(x)$ does not exist since there's a vertical asymptote there.
In a nutshell: $x=-1$ and 2
b. State where the function is discontinuous and classify the discontinuity as removable, jump or asymptote.
SOLN: In addition to the two discontinuities from (a) above, there's a removable discontinuity at $x=-8$.
In a nutshell: $x=-8,-1$ and 2
c. State, with reasons, the numbers at which the function is not differentiable.

SOLN: The function is not differentiable where it's not continuous: $x=-8,-1$ and 2 . It also has corners (not smooth places) at $x=-5,-3$ and 1 .
Finally it's not differentiable at $x=-4$ since the tangent line is vertical there.
In a nutshell: $x=-8,-5,-4,-3,1,2$

2. Compute the limit, if it exists.
a. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-3 x+2}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x-1)}=\frac{1}{2-1}=1$
b. $\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}\left(\frac{\sqrt{h+1}+1}{\sqrt{h+1}+1}\right)=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{h+1}+1)}=\frac{1}{2}$
c. $\lim _{x \rightarrow \infty} \frac{2 x^{4}-x^{2}+4 x}{16-x^{4}}=\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x^{2}}+\frac{4}{x^{3}}}{\frac{16}{x^{4}}-1}=\frac{2-0+0}{0-1}=-2$
d. $\lim _{\theta \rightarrow 0} \frac{\sin 5 \theta}{2 \theta}=\frac{5}{2} \lim _{5 \theta \rightarrow 0} \frac{\sin 5 \theta}{5 \theta}=\frac{5}{2}$
3. Use the definition of the derivative to derive one of the formula below (your choice)

SOLN: $\frac{d}{d x}(\sqrt{x}) \equiv \lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{2 \sqrt{x}}$

$$
\begin{aligned}
\frac{d}{d x}(\sin x) & \equiv \lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\sin x \lim _{h \rightarrow 0} \frac{(\cos h-1)}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}=0+1 * \cos x
\end{aligned}
$$

4. Use the various shortcut rules (product rule, chain rule, etc.) to simplify the derivative:
a. $f(t)=\frac{3 t-5}{t^{2}+7 t-11} \Rightarrow f^{\prime}(t)=\frac{\left(t^{2}+7 t-11\right) 3-(2 t+7)(3 t-5)}{\left(t^{2}+7 t-11\right)^{2}}=\frac{-3 t^{2}+10 t+2}{\left(t^{2}+7 t-11\right)^{2}}$
b. $g(x)=x^{5} \tan (2 x) \Rightarrow g^{\prime}(x)=5 x^{4} \tan (2 x)+2 x^{5} \sec ^{2}(2 x)$
c. $\quad h(u)=\sin (\sin (\sin u)) \Rightarrow h(u)=\cos (\sin (\sin u)) \cos (\sin u) \cos u$
5. Sketch a graph for a function defined on $[-4,4]$ that meets the given conditions:
$f(0)=1, \quad f^{\prime}(-2)=f^{\prime}(1)=f^{\prime}(3)=0, f^{\prime}(0)$ is undefined
$f^{\prime}(x)<0$ only on $(-2,0) \cup(1,3)$
$f^{\prime \prime}(x)<0$ only on $(-4,0) \cup(0,2)$

6. Find a linear approximation for the function $R=\frac{100 r}{100+r}$ near $a=50$
and use it to approximate R when $r=53$.
SOLN: $R^{\prime}=\frac{(100+r) 100-100 r}{(100+r)^{2}}=\frac{10000}{(100+r)^{2}}$, So at $a=50, R^{\prime}=\frac{10000}{(150)^{2}}=\frac{4}{9}$. Thus the approximating line is $R=\frac{100}{3}+\frac{4}{9}(r-50)$. At $r=53, R \approx \frac{100}{3}+\frac{4}{9}(53-50)=\frac{104}{3}$
7. Find an equation for the line tangent to $y=e^{\cos 2 x}$ at $x=\frac{\pi}{4}$.

SOLN: $y^{\prime}=-2 \sin 2 x e^{\cos 2 x}$ so at $x=\frac{\pi}{4}$, the slope of the tangent line is $m=-2$ and the equation for the tangent line is $y=1-2\left(x-\frac{\pi}{4}\right)$.
8. Under what condition(s) will the points on a tangent line lie beneath the curve? SOLN: If the curve is concave up, at least in the immediate neighborhood of the point.
9. Find the local and global extreme values of the function $y=x^{2} \ln x^{2}$ on the interval $[-2,2]$. SOLN: It may be a bit simpler to work with the equivalent formula, $y=2 x^{2} \ln |x|$. $y^{\prime}=4 x \ln |x|+2 x=0$ If x is not 0 then $\ln |x|=-\frac{1}{2} \Leftrightarrow x= \pm e^{-1 / 2} \approx \pm 0.6065$
10. Find the point on the parabola $x=16-y^{2}$ that is closest to the point $(16,3)$.
SOLN : The square of the distance from $(16,3)$ to the parabola is $D^{2}=(16-x)^{2}+(3-y)^{2}=\left(y^{2}\right)^{2}+(3-y)^{2}$. Differentiating with respect to y we have $2 D \frac{d D}{d y}=4 y^{3}-2(3-y)=4 y^{3}+2 y-6=2(y-1)\left(2 y^{2}+2 y+3\right)$ so the only real value of y that assures $\frac{d D}{d y}=0$ is $y=1$, which means $x=15$.
11. If $y=e^{x y}$, find an expression for $\frac{d y}{d x}$ and write a linearization for y near $(0,1)$.

SOLN: First write the equivalent logarithmic equation: $\ln y=x y$, the differentiate with respect to x implicitly: $\frac{1}{y} \frac{d y}{d x}=y+x \frac{d y}{d x}$. Plugging in $(x, y)=(0,1)$ we get $\frac{d y}{d x}=1$. Thus the equation for the tangent line is $y=x+1$.
12. Find an equation for the line tangent to $x^{3}+x^{2} y+2 y^{3}=2$ at $(2,-1)$.

SOLN: Differentiating with respect to x implicitly: $3 x^{2}+2 x y+x^{2} \frac{d y}{d x}+6 y^{2} \frac{d y}{d x}=0$. Plugging in the point coordinates, $12-4+4 \frac{d y}{d x}+6 \frac{d y}{d x}=0 \Leftrightarrow \frac{d y}{d x}=-\frac{4}{5}$, so the tangent line is the solution set to $y=-1-\frac{4}{5}(x-2)=-\frac{4}{5} x+\frac{3}{5}$
13. Show that the y-coordinate of the point (x, y) on the curve described by $\frac{x^{2}+1}{\ln \left(y^{2}+4\right)}=1$ that is closest to the point $(0,2)$ can be found by solving $y^{3}-2 y^{2}+5 y-8=0$. Use Newton's method to solve the equation. Hint: Minimizing the distance D is equivalent to minimizing the square of the distance, D^{2}. Also, the curve has origin symmetry, so you can just work with the distance in the first quadrant.
SOLN: Here the square of the distance from $(0,2)$ to the curve is $D^{2}=(x-0)^{2}+(y-2)^{2}=x^{2}+(y-2)^{2}$. On the curve, $x^{2}=-1+\ln \left(y^{2}+4\right)$. Substituting, for x^{2}, we get $D^{2}=-1+\ln \left(y^{2}+4\right)+(y-2)^{2}$. Differentiating with respect to y;
$2 D \frac{d D}{d y}=\frac{2 y}{y^{2}+4}+2(y-2)$, and setting this to zero we have the equivalent equation

$$
\begin{aligned}
& y^{3}-2 y^{2}+5 y-8=0 . \text { To find a zero of this cubic, iterate } \\
& y_{n+1}=y_{n}-\frac{y_{n}^{3}-2 y_{n}^{2}+5 y_{n}-8}{3 y_{n}^{2}-4 y_{n}+5}=\frac{2 y_{n}^{3}-2 y_{n}^{2}+8}{3 y_{n}^{2}-4 y_{n}+5}
\end{aligned}
$$

The TI85 screen captures showing how this can be implemented are below (assuming this formula is in $y 4$ on the graph page:

14. A box with a square base with no top has a surface area of 108 square feet. Find the dimensions that will maximize the volume.
SOLN: Let $x=$ the side of the square base and let $y=$ the height of the box. Then the surface area is $x^{2}+4 x y=108$ which means that the height of the box can be represented as $y=\frac{108-x^{2}}{4 x}$. The volume of the box is $V=x^{2} y$. Substituting for y we have $V=x^{2} y=\frac{108 x-x^{3}}{4}=27 x-\frac{x^{3}}{4}$. Thus the instantaneous rate of change in the volume per change in x is $\frac{d V}{d x}=27-\frac{3 x^{2}}{4}=0 \Rightarrow x=6 \Rightarrow y=3$
15. Use Newton's method to approximate a solution to $x^{2}=\cos 2 x$ to 8 digits. Simplify the iteration formula for this case, use an initial value of $x=1$ and show what the iterates are. SOLN: $x^{2}=\cos 2 x \Leftrightarrow f(x)=x^{2}-\cos 2 x=0$. Applying Newton's iteration formula we have $x_{n+1}=x_{n}-\frac{x_{n}^{2}-\cos 2 x_{n}}{2 x_{n}+2 \sin 2 x_{n}}$. The iterates starting at $x=1$ are then
$=1+x$

