Math 1A - Calculus - Chapter 4 Test Solutions - Spring 07

1. A bug is crawling along the curve $y=\sqrt[3]{x}$ so that as the bug passes through the point $(27,3)$ its x-coordinate increases at a rate of $0.2 \mathrm{~cm} / \mathrm{s}$.
a. How fast is the y-coordinate increasing?

SOLN: $\left.\frac{d y}{d t}\right|_{x=27}=\left.\frac{1}{3 \sqrt[3]{x^{2}}} \frac{d x}{d t}\right|_{x=27}=\frac{1}{3 \sqrt[3]{27^{2}}}(0.2)=\frac{1}{135}=0.00 \overline{740} \mathrm{~cm} / \mathrm{sec}$
b. How distance from the bug to the origin changing at this instant?

SOLN: $D^{2}=x^{2}+y^{2} \Rightarrow 2 D \frac{d D}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \Rightarrow \frac{d D}{d t}=\frac{27(0.2)+3(0.00 \overline{740})}{\sqrt{3^{2}+27^{2}}} \approx 0.19959$
2. Two sides of a triangle have lengths $b=3$ and $c=4$. What is the rate of change in the third side a per change in the angle between b and c when $a=5$? Recall that the law of cosines involves the formula $a^{2}=b^{2}+c^{2}-2 b c \cos \theta$.
SOLN: Differentiating, we have $2 a \frac{d a}{d \theta}=2 b c \sin \theta \Leftrightarrow \frac{d a}{d \theta}=\frac{b c \sin \theta}{a}$. Plugging in $b=3, c=4$ we see we have $\theta=\frac{\pi}{2}$ and $a=5$ so that $\frac{d a}{d \theta}=\frac{12}{5}$
3. Sketch the graph of a function on $[0,5]$ that has no global maximum nor minimum, two local minima, one local maximum and four critical numbers.
SOLN: Since the endpoints are going to be either local max or min we have to work in 4 critical numbers on the interior, while creating only one additional local extremum. For the function graphed at right, there is a local max at A , local minima at C and K and critical points at $\mathrm{B}, \mathrm{E}, \mathrm{F}$ and G (the function is continuous at B, E and F, but the derivative does not exist; at G there is a stationary point, but no max nor min.) There is no global extreme since the jump discontinuities from D to C and from H to I to J involve an unrealized max at D and an unrealized min at H .

4. Find the inflection points of $y=x^{2} e^{3 x}$.

SOLN: $y^{\prime}=\left(2 x+3 x^{2}\right) e^{3 x} \Rightarrow y^{\prime \prime}=\left(2+12 x+9 x^{2}\right) e^{3 x}=0 \Leftrightarrow x=\frac{-12 \pm 6 \sqrt{2}}{18}=-\frac{2}{3} \pm \frac{\sqrt{2}}{3}$. That means that $y=\left(\frac{2}{3} \mp \frac{4 \sqrt{2}}{9}\right) \exp (-2 \pm \sqrt{2})$. Thus the inflection points are
$\left(-\frac{2}{3}-\frac{\sqrt{2}}{3},\left(\frac{2}{3}+\frac{4 \sqrt{2}}{9}\right) \exp (-2-\sqrt{2})\right) \approx(-1.14,0.043)$
and
$\left(-\frac{2}{3}+\frac{\sqrt{2}}{3},\left(\frac{2}{3}-\frac{4 \sqrt{2}}{9}\right) \exp (-2+\sqrt{2})\right) \approx(-0.20,0.021)$

5. Suppose $f^{\prime}(x)=(x+2)^{2}(x-7)^{3}(x-11)^{4}$. On what intervals is f increasing?

SOLN: The function f is increasing on the interval $(7, \infty)$.
6. Use a calculator to examine the graphs of $f(x)=\tan x+5 \sin x$ and $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

SOLN: To get started, it's a good idea to find formulas for $f^{\prime}(x)=\sec ^{2} x+5 \cos x$ and $f^{\prime \prime}(x)=\frac{2 \sin x}{\cos ^{3} x}-5 \sin x$ and observe that each has a period of 2π. Given that we're adding to an amplitude 5 sine wave, on the TI86, I set up my Window page and defined the functions this way:

WIFTIDN $x \operatorname{lin}_{1}=0$
$x 19 x=6,28185$
$\times 5 \mathrm{C}=9659863.374$

$\cdot \underline{-1} \mid \boldsymbol{x} \times=8$
$+2 \mathrm{C}=1=1$

Floti flote Fiots

The graphs of all three together and just the first and second derivatives separately look like this:

The function itself looks like this:

a. How many local extrema are in each period? SOLN: Two, a max and a min.
b. How many intervals of increase are in each period?

SOLN: 3 or 4 intervals of increase and 1 or 2 intervals of decrease (depending on how you set the period interval)
c. How many inflection points are in each period?

SOLN: There are 3 inflection points in each period... as I've shown them, but there are wouldbe inflection points at the endpoints, so by shifting the window slightly you pick up a fourth.
7. Find $\lim _{x \rightarrow 0} \frac{e^{5 x}-1-\sin x}{x^{2}+x}$ using L'Hospital's rule, if appropriate.

SOLN: $\lim _{x \rightarrow 0} \frac{e^{5 x}-1-\sin x}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{5 e^{5 x}-\cos x}{2 x+1}=4$
8. For what values of a and b is the following true: $\lim _{x \rightarrow 0} \frac{\sin 6 x}{x^{3}}+a+\frac{b}{x^{2}}=0$?

SOLN: $\lim _{x \rightarrow 0} \frac{\sin 6 x}{x^{3}}+a+\frac{b}{x^{2}}=a+\lim _{x \rightarrow 0} \frac{b x+\sin 6 x}{x^{3}}=a+\lim _{x \rightarrow 0} \frac{b+6 \cos 6 x}{3 x^{2}}=a+\lim _{x \rightarrow 0} \frac{b+6 \cos 6 x}{3 x^{2}}$
Now for this limit to exist, we need the numerator to approach zero together with the denominator.
Thus $b=-6$ and we have $a+\lim _{x \rightarrow 0} \frac{-6+6 \cos 6 x}{3 x^{2}}=a+\lim _{x \rightarrow 0} \frac{-36 \sin 6 x}{6 x}=a-36=0$ so $a=36$.
9. If $y=x^{2}-x+1$, what value will minimize the product $x y$ on the interval $[0,2]$?

SOLN: We seek to minimize $x^{3}-x^{2}+x$ whose rate of change per change in x is $3 x^{2}-2 x+1$. This quadratic has a negative discriminant, so it has no real zeros and is, in fact, always positive. Thus the product is always increasing and its minimum is at the left endpoint where $x y=0$.
10. Find the points on the ellipse $9 x^{2}+y^{2}=9$ which are farthest from the point $(0,3)$.

SOLN: We seek to maximize the distance from $(0,3)$ to $(\cos , 3 \sin)$. The square of this distance is $D^{2}=(0-\cos \theta)^{2}+(3-3 \sin \theta)^{2}=\cos ^{2} \theta+9-18 \sin \theta+9 \sin ^{2} \theta=10-18 \sin \theta+8 \sin ^{2} \theta$. Thus $2 D \frac{d D}{d \theta}=-18 \cos \theta+16 \sin \theta \cos \theta=0 \Rightarrow \cos \theta=0$ or $\sin \theta=\frac{9}{8}$. The sin function can't be greater than 1 , so it must be that $\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$. Now $\theta=\frac{\pi}{2}$ corresponds to the point $(0,3)$, which is zero distance (a minimum) and $\theta=\frac{3 \pi}{2}$ corresponds to $(0,-3)$, at the extreme opposite end of the ellipse (a distance 6 away) which must be a maximum.
11. A painting in an art gallery has height h and is hung so that the lower edge is a distance d above the eye of the observer. How far from the wall should the viewer stand so as to maximize the angle α the painting subtends at the viewer's eye?
SOLN: Let $x=$ the distance to the wall and let β be the angle the

line from the eye to the lower edge of the picture forms with the horizontal. Then $\tan \beta=\frac{d}{x}$ and $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{\tan \alpha+\frac{d}{x}}{1-\frac{d}{x} \tan \alpha}=\frac{x \tan \alpha+d}{x-d \tan \alpha}=\frac{h+d}{x}$. The last equation here relates
variables x and α. Clearing out the fractions we get the equivalent equation, $x^{2} \tan \alpha+d x=(h+d)(x-d \tan \alpha)$. Assuming that x is a function of α we differentiate with respect to $\alpha: 2 x \frac{d x}{d \alpha} \tan \alpha+x^{2} \sec ^{2} \alpha+d \frac{d x}{d \alpha}=(h+d)\left(\frac{d x}{d \alpha}-d \sec ^{2} \alpha\right)$. Grouping terms we have: $(h-2 x \tan \alpha) \frac{d x}{d \alpha}=\left(d(h+d)+x^{2}\right) \sec ^{2} \alpha$. Thus if $\frac{d x}{d \alpha}=0$, then $d(h+d)+x^{2}=0 \Rightarrow x=\sqrt{d(h+d)}$, the geometric mean of the lift with total height, of course!
12. Use Newton's method to approximate $\sqrt[3]{1729}$ accurate to 8 decimal places. Start with $x_{1}=8$ and show the iteration formula and the iterates up to convergence.
SOLN: Let $f(x)=x^{3}-1729$. Then f has a zero at $\sqrt[3]{1729}$ and we iterate

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-1729}{3 x_{n}^{2}}=\frac{2 x_{n}^{3}+1729}{3 x_{n}^{2}}
$$

$8+\times$

