Math 1A – Calculus – Chapter 4 Test – Spring 07 Name_ Show work for credit. Don't abuse a calculator.

- 1. A bug is crawling along the curve $y = \sqrt[3]{x}$ so that as the bug passes through the point (27, 3) its x-coordinate increases at a rate of 0.2 cm/s.
 - a. How fast is the *y*-coordinate increasing?
 - b. How distance from the bug to the origin changing at this instant?
- 2. Two sides of a triangle have lengths 3 and 4. How fast is the angle between them changing when the opposite side is equal to 5? Recall that the law of cosines involves the formula $a^2 = b^2 + c^2 2bc \cos \theta$
- 3. Sketch the graph of a function on [0,5] that has no global maximum nor minimum, two local minima, one local maximum and four critical numbers.
- 4. Find the inflection points of $y = x^2 e^{3x}$.
- 5. Suppose $f(x) = (x+2)^2 (x-7)^3 (x-11)^4$. On what intervals is *f* increasing? Write your answer using interval notation.
- 6. Use your calculator to examine the graph of $f(x) = \tan x + 5\sin x$ as well as the graphs of $f(x) = \tan x + 5\sin x$ as well as the graphs of

f'(x) and f''(x).

- a. How many local extrema are in each period?
- b. How many intervals of increase are in each period?
- c. How many inflection points are in each period?
- 7. Find $\lim_{x\to 0} \frac{e^{5x} 1 \sin x}{x^2 + x}$ using L'Hospital's rule, if appropriate.
- 8. For what values of *a* and *b* is the following true: $\lim_{x \to 0} \frac{\sin 6x}{x^3} + a + \frac{b}{x^2} = 0$?
- 9. If $y = x^2 x + 1$, what value will minimize the product xy on the interval [0, 2] ?-
- 10. Find the points on the ellipse $9x^2 + y^2 = 9$ which are farthest from the point (0, 3).
- 11. A painting in an art gallery has height h and is hung so that the lower edge is a distance d above the eye of the observer. How far from the wall should the viewer stand so as to maximize the angle α the painting subtends at the viewer's eye?

12. Use Newton's method to approximate $\sqrt[3]{1729}$ accurate to 8 decimal places. Start with $x_1 = 8$ and show the iteration formula and the iterates up to convergence.