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The Dynamics of Newton's Method 

for Cubic Polynomials 
James A. Walsh 

James Walsh, upon receiving his B.S. from the University of 
Connecticut, taught for two years in the Peace Corps in Togo, 
West Africa. He also taught high school mathematics and re? 
ceived his M.A. in education from Fairfield University. After 
receiving his Ph.D. in mathematics from Boston University in 
1991 he came to Oberlin College, where he is an assistant 
professor. His research interests are in dynamical systems. He 
is also interested in incorporating aspects of dynamical systems 
theory into the undergraduate curriculum. In his spare time he 
and his wife Debbi enjoy watching their son Zach crawl around 
the floor. 

The aim of this article is to investigate the behavior of Newton's method for cubic 

polynomials with real coefficients?a seemingly simple task! Yet we hope the 
reader will find the results not only of interest but somewhat surprising as well. We 

begin with the basic ideas and terminology of iteration. 
Given F: R -> R and x0 e R, the sequence 

x0,F(x0),F(F(x0))=F2(X()),F(F(F(x0)))=F3(x0),...,F"(x0),... 

is called the orbit of x0. The term Fn(x0) represents n-fold composition of F and 
is the nth iterate of x0. The basic question one poses in studying iteration is 
"What happens to orbits over time (as n -> oo)?" 

We first focus on the simplest orbits. If F(xQ) =x0, so that x0 is a fixed point of 

F, the orbit of x0 is x0, x0, x0,... . More generally, if Fn(x0) =x0 for some n > 0, 
then x0 lies on a periodic orbit (or cycle), an orbit that simply repeats over time. 
Periodic orbits also come equipped with certain dynamical properties; if Fn(x0) = 

x0 and \(Fny(x0)\ < 1, then orbits with initial points near x0 converge to the orbit 
of x0. We say that such an x0 lies on an attracting periodic orbit. If x0 is a period 
n point for F and |(F")'(*0)I > 1? then nearby orbits begin by moving away from 
the orbit ofx0. In this case the orbit of x{) is said to be a repelling periodic orbit 

[5]. 
If x0 lies on an attracting periodic orbit, the basin of attraction of x0 is the set 

of all points whose orbits converge to the orbit of x{) as n -> oo. We will soon see 
that basins of attraction can be rather complicated sets! The immediate basin of 
attraction W(x0) of a periodic point x0 is the largest interval containing x{) that 
lies entirely in the basin of attraction of xQ. 

Given a differentiable function /: R -> R, Newton's method consists of iterating 
the function Nf(x) =x -f(x)/f'(x). Evidently the roots of / are fixed points of 

Nf, and we would like to determine the possible behaviors of orbits when Nf is 
iterated. The familiar geometry of Newton's method is shown in Figure 1. 

If x0 is a root of / of multiplicity one, i.e., f(x{))=x{) but f'(x0)?=0, then 

Nf(xQ) 
= f(xQ)f"(x0)/(ff(x0))2 = 0, so x0 is an attracting fixed point for Nf. In 

fact, if x0 is a root of / of multiplicity greater than one, it is still true that x0 is an 

attracting fixed point of Nf [5, p. 167]. The attractive nature of these fixed points is 
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Figure 1 
The geometry of Newton's method. 

what makes Newton's method "work"; if we begin the iteration of Nf with an 
initial point in the basin of attraction of a root x0 of /, then the orbit of this point 
will converge to x0. Thus finding the basin of attraction of each root, or at least the 
immediate basin of attraction?the largest interval containing the root inside 
which Newton's method will always converge to that root?is an important part of 
the study of Newton's method. We would also like to determine the set of initial 
values for which Newton's method fails, i.e., the points that are not in the basin of 
attraction of any root of /. That is, we want to find the set 

E = 
[x e R: the sequence N"(x) does not converge to a root of / as n -> ooj. 

To simplify matters we will consider functions only as complicated as cubic 

polynomials. As a warm-up we begin with the simplest of all functions, namely 

f(x) = ax + b where a ?= 0. Orbits for Nf are extremely well behaved?given any 

x0 e R, Nf(x0) is the solution of f(x) = 0 (of course, there is a simpler way to solve 
ax + b = 0!). We note that E = 0. 

Suppose / is a quadratic polynomial with distinct real zeros. Denote these zeros 

by / and r, l <r, and let e be the critical point of /. Again orbits are very well 

behaved for Nf. The basin of attraction of r coincides with the immediate basin of 

attraction of r, which is the interval (e, +oo). To see this, note that x0> r implies 

Nfn(x0) <Nf~Kx0) and Nfn~\x0) > r for all n>\. Hence the orbit of x0 con- 

verges to some point p as n -> <?, and by the continuity of Nf, Nf(p) =p. Hence 

p = r. If e<x0<r, Nf(xQ)>r, so W(r) = (e, +oo); see Figure 1. Likewise the 

basin of attraction of / is the interval (-oo,e). In this setting E = {e}, so that if 

x0 ?> e the orbit of x0 converges to either /or r. 

We now consider cubic polynomials, and again we simplify matters before 

proceeding. Note that if g(x) = kf(x) for some constant k, then Nf(x) 
= 

Ng(x), so 

we consider only monic cubics. Also, if g(x) =f(A(x)) where A{x) = ax + b, then 

ANgA~\x) 
= 

Nf(x). That is, Ng and Nf are conjugate by an affine transformation 

and thus exhibit the same dynamics. If x0 lies on a periodic orbit for Ng, then 

A(x0) lies on a periodic orbit for Nf. Moreover, if x0 lies on an attracting (resp. 

repelling) cycle, A(x0) lies on an attracting (resp. repelling) cycle. Hence an affine 

change of variables does not alter the dynamics of Newton's method, so for our 

family of cubics we will fix one zero at x = - 2 and take ? yl ? c as the other two 

zeros, where ceR. Our family of cubics is then fc(x) = (x + 2)(x2 + c), with 
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associated Newton's method function 

Nc(x)=x- 
fc(x) 2x3 + 2x2-2c 

f'c(x) 3x2 + 4x + c 

a one-parameter family of rational maps. For future reference, we note that in 

general N,f(x)=f(x)f"(x)/(f,(x))2\ thus the critical points of Nc are the three 
roots of fc together with x = - 

f, the root of /". 
We first consider fc for c < 0, so that fc(x) = 0 has three distinct, real solutions. 

Once again the dynamics of Nc, while more interesting than in the quadratic case, 
are still rather tame. We present a brief analysis for the case c= -1, setting 

f(x) =/_!(*) and N(x) = N_x(x); see also [7], [10]. 
As in the quadratic case, W{\) = (e2, + ??) and W(- 2) = (- oo, ex), where ex < e2 

are the critical points of /. Since x = -1 is an attracting fixed point for N and N 
is continuous on (el,e2), ^(-1) is an open interval (a,b) for some a,b with 

ex <a <b <e2. Moreover, by the definition of the immediate basin of attraction, 
N((a, b)) = (a, b), and hence there are four possibilities as to the images of a and 
b under N. Either N(a) = a and N(b) = b, N(a) = b and N(b) = a, N(a) = a and 

N(b) = a, or N(a) = b and N(b) = b. Three of these possibilities imply that either 
a or b (or both) is fixed by N, a contradiction. Thus N(a) = b and N(b) = a, so 
that a and b form a two-cycle for N. As we will see shortly, this is a repelling 
two-cycle, which of course is good news for Newton's method! A graph of 

y =N2(x) -x shows that the equation N2(x)=x has five real solutions, three of 
which are the fixed points x=-2, x=?l, and x = l. The remaining two 
solutions must be a and b. We note also that a < <b. 

A computation yields N'(x) < 0 on (ev -1) U (- f, e2). Thus N maps (ex, a) in 
a one-to-one fashion onto (b, +oo). Choose e3^(ex,a) such that N(e3) = e2. 
Likewise, let e4 e (b, e2) be the unique point satisfying N(e4) = ex (see Figure 2). 

Figure 2 
The two-cycle {a, b) and the beginnings of the sequence {ek}. 

Now note that N((e3, a)) = (b, e2), so choose e5 e (e3, a) such that N(e5) = e4. 
Similarly, let e6 e (b, e4) satisfy N(e6) = e3. Continuing in this fashion, we con- 
struct a recursively defined sequence {ekTk = \ with N(e2n + l) = e2n and N(e2n + 2) = 

e2n-\ ^or n>\. Since ex < e3 < e5 < 
? ? ? < a and e2> e4> e6> 

? ? ? > b, the sub- 

sequence {e2?-i)? = i converges to a limit < a and {e2n}?=l converges to a limit > b. 
We claim that e 2n-l a and e2n-*b as n -> oo. Let g = N l ? N l: (b, e2) 

? 

(b,e2). For all n>l, g(e2n) = e2n+4, and so by the continuity of g, e2n^>p as 
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n -> oo implies g(p) =p. That is, p is a period-two point for N~l, and hence also 
for N. We have seen that the period-two points for N are a and b, implying p = b. 

Likewise, e2n_x -> a as n -> oo. 
The reader may well be wondering why we choose to focus on the images under 

N~x of the critical points of /. The answer is that these inverse images form the 
boundaries of the connected components of the basins of attraction of - 2 and 1 as 
follows. N{(ex,e3)) = (e2, +oo) and hence (eve3) is contained in the basin of 
attraction of x = 1. N((e4, e2)) = (-(X>,e1) = W(-2), so the orbit of any x e (e4, e2) 
converges to x = -2 as n -> oo. Likewise, N((e6, e4)) = (ex, e3), and so (e6, e4) is a 
subset of the basin of attraction of x = 1. Continuing in this fashion and focusing 
on the interval (eva), we see that (e4n_3, e4n_{) is contained in the basin of 
attraction of x = 1, while (e4n_l,e4n + 1) is a subset of the basin of attraction of 
x= ?2 for all n > 1. On the interval (ex,a) we have an infinite sequence of 

alternating components of the basins of attraction of x = 1 and x = ? 2, respec? 
tively. The lengths of these intervals decrease to 0, with the endpoints converging 
to a. A similarly complex pattern exists on the interval (b,e2); see Figure 3. An 

example in [11] shows that the intervals forming each basin of attraction decrease 

approximately geometrically in length. 

-H'l-i-h-HH-h?I-1 
a b em eH et eA e2 

a Connected component of i i Connected component of 
basin of attraction of 1 basin of attraction of - 2 

Figure 3 

As mentioned above, the dynamics of iterating Nc for c < 0 are more complex 
than in the case of Newton's method for quadratic polynomials, yet remain tame. 
In particular, the set E just contains the sequence {ek}^==l and a repelling 
two-cycle {a, b], so that E is a countable set. Newton's method will still converge to 
a zero of fc(x) = 0 on a set of initial points having full Lebesgue measure in R. We 
note the contrast to the case where / is a polynomial of degree d > 4 with d real, 
distinct zeros. In this setting E contains a Cantor set [1], and Nf restricted to this 
Cantor set is chaotic [8]. 

We now turn our attention to computer experiments carried out in the case 
c > 0, so that fc(x) = 0 has one real and two complex solutions. We will make use 
of the following theorem of P. Fatou [6]. 

Theorem. If R(z), a rational function of a complex variable z, has an attracting 
periodic cycle, then the orbit of at least one critical point will converge to it. 

Remark. In the case of our cubic polynomial / with c < 0, we have seen that the 
rational function Nc(x) has a two-cycle {a,b}, and that the critical points of Nc are 
the three real roots of / (fixed points of Nc) and the point x= - 

f. Since 
a < ? 

\ < b, and (a, b) is the immediate basin of attraction of the middle root, the 
orbit of - 

| converges to this root. Hence the theorem implies that the two-cycle 
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{a, b) cannot be attracting. Our earlier analysis showed that it is in fact repelling: 
All orbits that start near a or b converge to one of the three roots of /, unless they 
start at one of the points ek, in which case the orbit moves away until it reaches 
either ex or e2, where Nc is undefined. 

Since x = - 
\ is the only critical point of Nc that is not fixed under Nc, Fatou's 

theorem implies that if Nc has an attracting periodic orbit then the orbit of x = -\ 
will converge to it. Thus we will examine the orbit of x = ? 

? under Nc as c varies 

through positive values, hoping to find values of c for which this orbit is attracted 
to a periodic orbit. For example, as c decreases from 0.2, plotting only the 

long-term behavior of the orbit we find the graphs shown in Figure 4: Nc passes 
from having an attracting two-cycle to an attracting four-cycle, then an attracting 
eight-cycle. (The periods may be difficult to discern in the graphs, but lists of 
numerical values of N"(- f) make it clear that they are 2, 4, and 8.) 

c = 0.196 c = 0.190 

Figure 4 
Periodic orbits that attract the orbit of x ?? 

c = 0.188 

Evidently Nc is undergoing a sequence of period-doubling bifurcations [5]. This 

naturally leads us to consider a bifurcation diagram, where the values of c are 

placed on the vertical axis and, for a fixed c, iterates 100 through 200 of x = - 
j 

are plotted horizontally; see Figure 5. 

c = l 

c = 0 

c = 0.196 

c = 0.183 
jc= -2 

Figure 5 
The bifurcation plot for Nc. 

Figure 6 
Boxed portion of Figure 5, enlarged. 
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We first notice that for most positive values of c the orbit of x = - 
? converges 

to x = - 2. The exception is the sequence of small gaps in the values of c where 
the orbit is doing "something else." Zooming in on the box in Figure 5 yields the 

striking (and most likely familiar) bifurcation plot in Figure 6, normally associated 
with quadratic maps [5] (for complex cubics a similar experiment yields copies of 
the Mandelbrot set in parameter space [4]; see also [2], [3]). 

This suggests (since there are in fact two copies of this plot side by side in Figure 
5) that Nc2 is "quadratic like" on some interval. Figure 7 shows successive plots of 

Nc2 for c = 0.193, 0.188, and 0.175. We note the similarity with [5, p. 90]. We also 
remark that there exist infinitely many of these copies of the "quadratic" bifurca? 
tion plot within the bifurcation plot for Nc (some of which can be discerned in 

Figure 5). 

y=x y=x 

c = 0.193 c = 0.188 

Figure 7 
N? is locally "quadratic like.: 

c = 0.175 

As a final aid in understanding the dynamics of Nc, we use the following 
theorem [8], presented here in a less general fashion appropriate for our family fc. 
The Sarkovskii ordering [9] of the natural numbers referred to in the theorem is 

3>5>7> ??? >2-3>2-5>2-7> ??? >22 ? 3>22 ? 5>22 ? 7> ??? >22>2>1. 

Theorem. Letfbe a polynomial and Nf the associated Newton's method map. If Nf 
has an orbit of period n > 1 then at least one of the following holds: 

(1) For evety integer m where n <m, Nf has an orbit of period m. 

(2) For every integer m where n> m, Nf has an orbit of period m. 

Let's see how our results for cubic polynomials fit into the general picture this 
theorem provides of the dynamics of Newton's method for polynomials. First, in 
the case c < 0, recall that we've shown that Nc has a period-two orbit. The 
theorem asserts that either for all m > 2 Nc has an orbit of period m (which we 
know is not the case) or else for all m <2 Nc has an orbit of period m. But 1 is the 

only integer satisfying the latter "inequality," so the theorem just asserts that Nc 
has at least one fixed point. And indeed this is true: Nc has three fixed points, 
namely the roots of /. 

For c > 0, however, the orbit structure is much more complex. For c = 0.46, for 

example, we find a three-cycle (Figure 8). The above theorem then guarantees the 
existence of cycles of period m for all m > 3 or all m such that 3> m, and every 
natural number satisfies this second "inequality." In either case, there exist 
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Figure 8 
Period three implies very complicated dynamics. 

infinitely many periodic orbits for Nc with different periods. Points on these 

periodic orbits of period m > 1 are members of the set E, so we see that the 
nature of this set is dramatically more complex for certain positive values of the 

parameter c. Further analysis shows that in this case there are uncountably many 
orbits that remain bounded yet do not converge to any periodic orbit, so that the 
set E of starting points for which Newton's method will fail is uncountable [12]. 

We hope we have shown that Newton's method, even for a family of real cubic 

polynomials, contains surprisingly rich dynamical behavior. 

Author's note. This article was motivated by a software program I wrote while employed at Bolt, 
Beranek and Newman, Inc, in Cambridge, MA. The program allows the user to actively explore the 
dynamics of Nc for the above family of cubics fc, including the bifurcation diagram. In the first 
semester calculus course I devote four classes to iteration, with the fourth class a computer lab based 
on this software. My students become quite engaged by Newton's method. 

Acknowledgments. I thank Paul Blanchard for suggesting the family fc, and Paul Horwitz and Wally 
Feurzeig at BBN. 
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