Name \qquad
Show your work for credit. Write all responses on separate paper. No calculators.

1. Find each of the following limits:
a. $\lim _{x \rightarrow 0} \frac{\tan 3 x}{\sin 2 x}$
b. $\lim _{x \rightarrow 0} \frac{\cos m x-\cos n x}{x^{2}}$
c. $\left.\lim _{x \rightarrow 0} \frac{e^{5 x}-1-\sin x}{x^{2}+x} \right\rvert\,$
2. Consider $y=x^{3} e^{2 x}$.
a. Find all local extrema for y.
b. Find all the inflection points for y.
c. Sketch a graph for y showing these features.
3. For what values of a and b does the function $f(x)=\frac{a x}{b+x^{2}}$ have a maximum at $f(1)=2$?
4. If $y=x^{2}-x+1$, what value will minimize the product $x y$ on the interval $[0,2]$?
5. Find the point on the parabola, $y=x^{2}$, that is closest to the point $(3,0)$.
6. Consider all triangles whose sides are formed by a line passing through the point $(8 / 3,1)$ and both the x - and y axes. Find the dimensions of the triangle with the shortest hypotenuse.
7. A triangle has vertices at $(0,0),(a, 0)$ and (b, c). What are the coordinates of the point, P, such that the sum of the squares of the distances from P to the vertices of the triangle is minimized?
8. What angle θ between two edges of lengths 2 and 3 will result in a triangle with the largest area ?

9. Find the length of the shortest ladder that will reach over an 8 - ft . high fence to a large wall which is 3 ft . behind the fence.

Math 1A - Chapter 4 Test (part 2) Solutions - Fall '10

1. Find each of the following limits:
a. $\lim _{x \rightarrow 0} \frac{\tan 3 x}{\sin 2 x}=\lim _{x \rightarrow 0} \frac{3 \sec ^{2} 3 x}{2 \cos 2 x}=\frac{3}{2}$
b. $\lim _{x \rightarrow 0} \frac{\cos m x-\cos n x}{x^{2}}=\lim _{x \rightarrow 0} \frac{-m \sin m x-n \sin n x}{2 x}=\lim _{x \rightarrow 0} \frac{-m^{2} \cos m x-n^{2} \cos n x}{2}=-\frac{m^{2}+n^{2}}{2}$
c. $\lim _{x \rightarrow 0} \frac{e^{5 x}-1-\sin x}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{5 e^{5 x}-\cos x}{2 x+1}=4$
2. Consider $y=x^{3} e^{2 x}$.
a. Find all local extrema for y.

SOLN: $y^{\prime}=2 x^{3} e^{2 x}+3 x^{2} e^{2 x}=x^{2}(2 x+3) e^{2 x}=0 \Leftrightarrow x=0$ or $x=-\frac{3}{2} \quad$ Since $y^{\prime}<0$ for $x<\frac{-3}{2}$ and y^{\prime}
≥ 0 for $x>\frac{-3}{2}$ (note that y^{\prime} doesn't change sign at $x=0$).
Thus $y=\left(\frac{-3}{2}\right)^{3} e^{2(-3 / 2)}=\frac{-27}{8 e^{3}} \approx-0.168$ is the absolution minimum. There are no other extrema.
b. Find all the inflection points for y.

$$
y^{\prime}=\left(2 x^{3}+3 x^{2}\right) e^{2 x} \Rightarrow
$$

SOLN: $y^{\prime \prime}=2\left(2 x^{3}+3 x^{2}\right) e^{2 x}+\left(6 x^{2}+6 x\right) e^{2 x}=2 x\left(2 x^{2}+6 x+3\right) e^{2 x}$

$$
=4 x\left[\left(x+\frac{3}{2}\right)^{2}-\frac{3}{4}\right] e^{2 x}
$$

Thus the second derivative changes sign where $x=0$ and where $\left(x+\frac{3}{2}\right)^{2}=\frac{3}{4} \Leftrightarrow x=-\frac{3}{2} \pm \frac{\sqrt{3}}{2}$
c. Sketch a graph for y showing these features.

3. For what values of a and b does the function $f(x)=\frac{a x}{b+x^{2}}$ have a maximum at $f(1)=2$?

SOLN: Impose the two conditions $f(1)=2$ and $f^{\prime}(1)=0$ to get a system of equations you can solve for a and b. That is, $f(1)=\frac{a}{b+1}=2 \Leftrightarrow a=2(b+1)$ and

$$
f^{\prime}(x)=\frac{\left(b+x^{2}\right)(a x)^{\prime}-a x\left(b+x^{2}\right)^{\prime}}{\left(b+x^{2}\right)^{2}}=\frac{a\left(b+x^{2}\right)-2 a x^{2}}{\left(b+x^{2}\right)^{2}}=\frac{a\left(b-x^{2}\right)}{\left(b+x^{2}\right)^{2}} \text { so that } f^{\prime}(1)=0 \Rightarrow a(b-1)=0 .
$$

Now since $a \neq 0$ we must have $b=1$ whence $a=4$.
4. If $y=x^{2}-x+1$, what value will minimize the product $x y$ on the interval $[0,2]$?

SOLN: Substituting for $y, x y=x\left(x^{2}-x+1\right)=x^{3}-x^{2}+x=P(x)$. To minimize the product we look for critical points, that is where $P^{\prime}(x)=3 x^{2}-2 x+1=3(x-1 / 3) 2+2 / 3 \geq 2 / 3$ for all x. This means the function is increasing everywhere so the minimum product must be at the endpoint $P(0)=0$.
5. Find the point on the parabola, $y=x^{2}$, that is closest to the point $(3,0)$.

SOLN: There are at least two good approaches to the problem: you can use the distance formula or the fact that the line tangent to the curve at the closest point will be perpendicular to the line segment connecting it to $(3,0)$.
Using the distance formula we have $D^{2}=(3-x)^{2}+\left(0-x^{2}\right)^{2}=x^{4}+x^{2}-6 x+9$.
Thus $2 D D^{\prime}=4 x^{3}+2 x-6=2(x-1)\left(2 x^{2}+2 x+3\right)=0$ if $x=1$. So point on $y=x^{2}$ that's closest to $(3,0)$ is $(1,1)$.
6. Consider all triangles whose sides are formed by a line passing through the point $(8 / 3,1)$ and both the x - and y axes. Find the dimensions of the triangle with the shortest hypotenuse.
SOLN: The first question is what to use as a control parameter? There are several good answers to that question, including the slope of the line and the angle that slope makes with the x axis.
Let $m=$ the slope of the line. Then the equation for the line is $y-1=m(x-8 / 3)$ and the intercepts are then $(0$, $1-8 m / 3)$ and $(8 / 3-1 / m)$ mean that the square of the length of the hypotenuse is
$D^{2}=\left(1-\frac{8 m}{3}\right)^{2}+\left(\frac{8}{3}-\frac{1}{m}\right)^{2}=\left(1-\frac{8 m}{3}\right)^{2}+\frac{1}{m^{2}}\left(\frac{8 m}{3}-1\right)^{2}=\left(1-\frac{8 m}{3}\right)^{2}\left(1+\frac{1}{m^{2}}\right)$. Thus
$2 D D^{\prime}=-\frac{16}{3}\left(1-\frac{8 m}{3}\right)\left(1+\frac{1}{m^{2}}\right)+\left(1-\frac{8 m}{3}\right)^{2}\left(\frac{-2}{m^{3}}\right)=\left(1-\frac{8 m}{3}\right)\left[-\frac{16}{3}\left(1+\frac{1}{m^{2}}\right)-\frac{2}{m^{3}}\left(1-\frac{8 m}{3}\right)\right]=0$ So
either $1-\frac{8 m}{3}=0 \Leftrightarrow m=\frac{3}{8}$ or $-\frac{16}{3}\left(1+\frac{1}{m^{2}}\right)-\frac{2}{m^{3}}\left(1-\frac{8 m}{3}\right)=0 \Leftrightarrow 8 m^{3}+3=0 \Leftrightarrow m=\frac{-\sqrt[3]{3}}{2}$
$D^{2}=\left(1+\frac{4 \sqrt[3]{3}}{3}\right)^{2}\left(1+\frac{4}{\sqrt[3]{9}}\right)=\left(1+\frac{4 \sqrt[3]{3}}{3}\right)^{2}\left(1+\frac{4 \sqrt[3]{3}}{3}\right)=\left(1+\frac{4 \sqrt[3]{3}}{3}\right)^{3}$ So the dimensions of the triangle are
hypotenuse $=\left(1+\frac{4 \sqrt[3]{3}}{3}\right)^{3 / 2}$, vertical leg $=\frac{3+4 \sqrt[3]{3}}{3}$ and horizontal leg $=\frac{8}{3}+\frac{2}{\sqrt[3]{3}}=\frac{8+2 \sqrt[3]{9}}{3}$
Alternatively, Let $\theta=$ the acute angle the hypotenuse forms with the x-axis. Then we can break up the hypotenuse $=a+b$ where $\sin \theta=\frac{1}{a}$ and $\cos \theta=\frac{8}{3 b}$. So hypotenuse $=a+b=f(\theta)=\frac{1}{\sin \theta}+\frac{8}{3 \cos \theta}$ and
the extrema are where $f^{\prime}(\theta)=0 \Leftrightarrow f^{\prime}(\theta)=\frac{\cos \theta}{\sin ^{2} \theta}-\frac{8 \sin \theta}{3 \cos ^{2} \theta}=\frac{3 \cos ^{3} \theta-8 \sin ^{3} \theta}{3 \sin ^{2} \theta \cos ^{2} \theta}=0$
So that $\tan ^{3} \theta=\frac{3}{8} \Leftrightarrow \tan \theta=\frac{\sqrt[3]{3}}{2}$. This is the same result we got through somewhat greater effort above.
7. A triangle has vertices at $(0,0),(a, 0)$ and (b, c). What are the coordinates of the point, P, such that the sum of the squares of the distances from P to the vertices of the triangle is minimized?
SOLN: The sum of the squares of distances is
$S=(x-0)^{2}+(y-0)^{2}+(x-a)^{2}+(y-0)^{2}+(x-b)^{2}+(y-c)^{2}=3 x^{2}-2(a+b) x+3 y^{2}-2 c y+a^{2}+b^{2}+c^{2}$.
There are amny approaches to minimizing this distance. One is to set both $\frac{d y}{d x}=0$ and $\frac{d x}{d y}=0$.
The other is to complete the squares for both x and y. Completing the squares is relatively straight forward:

$$
\begin{aligned}
S & =3 x^{2}-2(a+b) x+3 y^{2}-2 c y+a^{2}+b^{2}+c^{2} . \\
S & =3 x^{2}-2(a+b) x+3 y^{2}-2 c y+a^{2}+b^{2}+c^{2} \\
& =3\left[x^{2}-\frac{2(a+b)}{3} x+\left(\frac{a+b}{3}\right)^{2}\right]+3\left[y^{2}-\frac{2}{3} c y+\left(\frac{c}{3}\right)^{2}\right]+a^{2}+b^{2}+c^{2}-3\left(\frac{a+b}{3}\right)^{2}-3\left(\frac{c}{3}\right)^{2} \\
& =3\left(x-\frac{a+b}{3}\right)^{2}+3\left(y-\frac{c}{3}\right)^{2}+a^{2}+b^{2}+c^{2}-\frac{a^{2}+2 a b+b^{2}}{3}-\frac{c^{2}}{3} \\
& =3\left(x-\frac{a+b}{3}\right)^{2}+3\left(y-\frac{c}{3}\right)^{2}+\frac{2}{3}\left(a^{2}-a b+b^{2}+c^{2}\right)
\end{aligned}
$$

is clearly minimized when $x=\frac{a+b}{3}$ and $y=\frac{c}{3}$
Alternatively, one can differentiate implicitly with respect to x and solve $y^{\prime}=0$. Then do the same for $x^{\prime}=0$.
$\frac{d}{d x} S=6 x-2(a+b)+6 y \frac{d y}{d x}-2 c \frac{d y}{d x}=0 \Leftrightarrow \frac{d y}{d x}=\frac{2(a+b)-6 x}{6 y-2 c}$.
So $y^{\prime}=0$ when $x=\frac{a+b}{3}$ and $x^{\prime}=0$ when $y=\frac{c}{3}$. That's some pretty neat calculus, huh?
8. What angle θ between two edges of lengths 2 and 3 will result in a triangle with the largest area ?

SOLN: The area of the triangle is $1 / 2$ Base * Altitude. Taking 2 as the base the altitude is $3 \sin \theta$ so the area is $A(\theta)=\frac{1}{2}(2)(3 \sin \theta)=3 \sin \theta$ which has an obvious maximum of 3 . Go ahead set the derivative to zero and solve for θ to verify this.
9. Find the length of the shortest ladder that will reach over an 8 - ft . high fence to a large wall which is 3 ft . behind the fence.

