Math 1A – Chapter 3 Test – Typical Problems Set

1. Use the definition of the derivative to compute each of the following limits. Follow the form of this

example:
$$\lim_{x \to 2} \frac{x^{10} - 1024}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) = 10(2)^9 = 5120$$

- a. $\lim_{x \to 0} \frac{\left(x^6 + x + 1\right) 1}{x}$ b. $\lim_{x \to 1} \frac{2^{3x} 8}{x 1}$ c. $\lim_{x \to 1/3} \frac{2\cos(\pi x) 1}{x \frac{1}{3}}$
- 2. Find equations of the lines tangent to the curve $y = \frac{x}{1+x^2}$ which are parallel to the line y - 0.48x = 0. Sketch a graph illustrating these tangencies.
- 3. Newton's law of gravitation says that the magnitude F of the force exerted by a body of mass m on a body of mass M is

$$F = \frac{GmM}{r^2}$$

- a. Assume the bodies are in motion. Find dF/dr and write a sentence of two explaining what that means.
- b. Suppose that planet Xorkon attracts an object with a force that decreases at a rate of 3 N/km when r = 10,000 km. How fast does the force change when r = 5000 km?
- 4. Use the *definition* of the derivative to simplify $\frac{d}{d\theta}\cos(2\theta)$.
- 5. For what values of x does the graph of f(x) = x² + 6x² + x + 4 have a horizontal tangent?
 6. A curve C is defined by the parametric equations x = sin(2t) y = 2cos(t).
 - a. Show that C has two tangent lines at the origin: (x, y) = (0, 0) and find their equations.
 - b. Find the points where the tangent line in the x-y plane is vertical.
- 7. Find an equation for the line tangent to $x^2y + xy^2 = 2xy$ at (1,1).
- 8. Let $y = \sqrt[3]{x}$.
 - a. Find the differential dy.
 - b. Evaluate dy and Δy if x = 8 and $dx = \Delta x = 0.1$
 - c. Estimate $\sqrt[3]{8.1}$ using the line tangent to $y = \sqrt[3]{x}$ at (8,2). What is the relative error in your estimation?
- 9. Find the derivative of the function $f(x) = (\cos x)^x$ by first differentiating $\ln y$.
- 10. Consider $f(r) = 2\sqrt{r} 3\sqrt[3]{r}$.
 - a. Simplify formulas for the first and second derivatives of f(r).
 - b. Use calculus to find the coordinates of the inflection point for f(r).

11. Find equations for the tangent lines to $y = \frac{x+1}{x-1}$ that are parallel to the line x+2y=17.

12. If
$$h(9) = 3$$
 and $h'(9) = -7$, find $\frac{d}{dx} \left(\frac{h(x)}{x} \right) \Big|_{x=9}$

13. In a fish farm, a population of the fish is introduced into a pond and harvested regularly. A model for the rate of change of the fish population is given by the equation

$$\frac{dP}{dt} = r_0 \left(1 - \frac{P(t)}{P_{\text{max}}} \right) P(t) - H \cdot P(t)$$

where r_0 is the birth rate of the fish, P_{max} is the maximum population the pond can sustain and H is proportion of fish harvested in a year. If the pond can sustain a maximum population of 5,000 fish, the birth rate is 4% and the harvesting rate is 2%, what (non-zero) population level(s) will not change, according to the model?

- 14. The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 8 atm and is increasing at a rate of 0.14 atm/min and V = 11L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 moles. Round your answer to four decimal places.
- 15. Use the definition of the derivative to compute $\frac{d}{dx}\sec(x)$.
- 16. Show that the curve described by the parametric equations $x(t) = 1 \cos(\pi t)$ $y(t) = \sin 3\pi t$
- 17. If $\sqrt{3} \sin x \cos y = 1$, find a formula for $\frac{dy}{dx}$ using implicit differentiation.
- 18. Find $\frac{d^{68}}{dx^{62}}(x \sin x)$ by finding the first few derivatives and observing the pattern that occurs.

has two tangent lines where t = 1/3 and find their equations. Illustrate these in a graph.

- 19. Use logarithmic differentiation to to find the derivative of $y = (\sec x)^x$
- 20. Verify the given linearization $\ln |x+1| \approx x$ near x = 0. What interval for x for is the linear approximation accurate to within 0.1?
- 21. Find an equation for the line tangent to $y = \tan^{-1}(\sin x)$ where x = 0.
- 22. Find an equation of the tangent line to the parametric curve $x = \sqrt[3]{t}$, $y = -t^{-\frac{1}{2}} + t^{-\frac{1}{2}}$ at the point corresponding to t = 1.
- 23. Find y" if $x^8 + y^8 = 1$.

24. Find an equation for the line tangent to the curve $y^3 + 3x^2y + x^3 = 15$ at (1,2).

25. Use implicit differentiation to find an equation of the tangent line to the curve $3(x^2 + y^2)^2 = 100(x^2 - y^2)$

at the point (4, 2). Give your answer in the form y = mx + b

26. At what point on the curve $y = 12x^{2/3} - 4x$ is the tangent line horizontal?

27. Derive a simple formula for the derivative $\frac{d}{dx}(\sinh^{-1}x)$

28. Find the points on the hyperbola $x^2 - 2y^2 = 1$ where the tangent line has slope = 2.

29. Let
$$y = \frac{\ln 3x}{x^3}$$
.

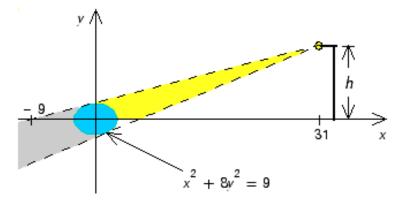
a.

Find
$$y'(x)$$

Find $y''(x)$

b.

- 30. Find a parabola that passes through (1,10) and whose tangent lines at x = -2 and x = 1 are -5 and 7, respectively.
- 31. The figure shows a lamp located 31 units to the right of the V-axis and a shadow created by the elliptical region $x^2 + 8y^2 \le 9$. If the point (-9,0) is on the edge of the shadow, how far above the x-axis is the lamp located?



32. Find an equation for the line tangent to the curve described by the parametric equations

$$x = \sin(3t) - \cos t$$

$$y = \cos(3t) - \sin t$$

where
$$t = \frac{\pi}{6}$$
.

33. Find y' if $x^{\otimes y} = y^{*x}$.

34. Use a linear approximation (or differentials) to estimate

- 35. A particle moves on a horizontal line so that its coordinate at time t is $x = e^{-t/4} \cos(2t)$.
 - a. Find the velocity and acceleration functions.
 - b. Find the distance the particle travels in the time $0 \le t \le \pi$.
 - c. When is the particle speeding up? When is it slowing down?

36. Consider $f(x) = \sqrt[3]{999 + x^3}$

- a. Find the linearization of at x = 9 and use it to approximate $\sqrt[3]{1999}$.
- b. What is the % error in your approximation?
- 37. Find the coordinates of the points where the line through (0,3) is tangent to the unit circle, $x^2 + y^2 = 1$.