1. Use the definition of the derivative to compute each of the following limits. Follow the form of this example: $\lim _{x \rightarrow 2} \frac{x^{10}-1024}{x-2}=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=f^{\prime}(2)=10(2)^{9}=5120$
a. $\lim _{x \rightarrow 0} \frac{\left(x^{6}+x+1\right)-1}{x}$
b. $\lim _{x \rightarrow 1} \frac{2^{3 x}-8}{x-1}$
c. $\lim _{x \rightarrow 1 / 3} \frac{2 \cos (\pi x)-1}{x-\frac{1}{3}}$
2. Find equations of the lines tangent to the curve $y=\frac{x}{1+x^{2}}$ which are parallel to the line $y-0.48 x=0$. Sketch a graph illustrating these tangencies.
3. Newton's law of gravitation says that the magnitude F of the force exerted by a body of mass m on a body of mass M is

$$
F=\frac{G m M}{r^{2}}
$$

a. Assume the bodies are in motion. Find $d F / d r$ and write a sentence of two explaining what that means.
b. Suppose that planet Xorkon attracts an object with a force that decreases at a rate of $3 \mathrm{~N} / \mathrm{km}$ when $r=10,000 \mathrm{~km}$. How fast does the force change when $r=5000 \mathrm{~km}$?
4. Use the definition of the derivative to simplify $\frac{d}{d \theta} \cos (2 \theta)$.
5. For what values of x does the graph of $f(x)=x^{3}+6 x^{2}+x+4$ have a horizontal tangent?
6. A curve C is defined by the parametric equations $\begin{aligned} & x=\sin (2 t) \\ & y=2 \cos (t)\end{aligned}$.
a. Show that C has two tangent lines at the origin: $(x, y)=(0,0)$ and find their equations.
b. Find the points where the tangent line in the $x-y$ plane is vertical.
7. Find an equation for the line tangent to $x^{2} y+x y^{2}=2 x y$ at $(1,1)$.
8. Let $y=\sqrt[3]{x}$.
a. Find the differential $d y$.
b. Evaluate $d y$ and Δy if $x=8$ and $d x=\Delta x=0.1$
c. Estimate $\sqrt[3]{8.1}$ using the line tangent to $y=\sqrt[3]{x}$ at $(8,2)$. What is the relative error in your estimation?
9. Find the derivative of the function $f(x)=(\cos x)^{x}$ by first differentiating $\ln y$.
10. Consider $f(r)=2 \sqrt{r}-3 \sqrt[3]{r}$.
a. Simplify formulas for the first and second derivatives of $f(r)$.
b. Use calculus to find the coordinates of the inflection point for $f(r)$.
11. Find equations for the tangent lines to $y=\frac{x+1}{x-1}$ that are parallel to the line $x+2 y=17$.
12. If $h(9)=3$ and $h^{\prime}(9)=-7$, find $\left.\frac{d}{d x}\left(\frac{h(x)}{x}\right)\right|_{x=9}$
13. In a fish farm, a population of the fish is introduced into a pond and harvested regularly. A model for the rate of change of the fish population is given by the equation
$\frac{d P}{d t}=r_{0}\left(1-\frac{P(t)}{P_{\max }}\right) P(t)-H \cdot P(t)$
where r_{0} is the birth rate of the fish, $P_{\text {max }}$ is the maximum population the pond can sustain and H is proportion of fish harvested in a year. If the pond can sustain a maximum population of 5,000 fish, the birth rate is 4% and the harvesting rate is 2%, what (non-zero) population level(s) will not change, according to the model?
14. The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is $P V=n R T$, where n is the number of moles of the gas and $R=0.0821$ is the gas constant. Suppose that, at a certain instant, $P=8 \mathrm{~atm}$ and is increasing at a rate of $0.14 \mathrm{~atm} / \mathrm{min}$ and $V=11 \mathrm{~L}$ and is decreasing at a rate of $0.17 \mathrm{~L} / \mathrm{min}$. Find the rate of change of T with respect to time at that instant if $n=10$ moles. Round your answer to four decimal places. $\frac{\pi I}{d t} \approx \quad 7 \mathrm{~K} / \mathrm{min}$
15. Use the definition of the derivative to compute $\frac{d}{d x} \sec (x)$.
16. Show that the curve described by the parametric equations $\begin{aligned} & x(t)=1-\cos (\pi t) \\ & y(t)=\sin 3 \pi t\end{aligned}$ has two tangent lines where $t=1 / 3$ and find their equations. Illustrate these in a graph.
17. If $\sqrt{3} \sin x \cos y=1$, find a formula for $\frac{d y}{d x}$ using implicit differentiation.
18. Find $\frac{d^{n \pi}}{d x^{68}}(x \sin x)$ by finding the first few derivatives and observing the pattern that occurs.
19. Use logarithmic differentiation to to find the derivative of $y=(\sec x)^{x}$
20. Verify the given linearization $\ln |x+1| \approx x$ near $x=0$. What interval for x for is the linear approximation accurate to within 0.1 ?
21. Find an equation for the line tangent to $y=\tan ^{-1}(\sin x)$ where $x=0$.
22. Find an equation of the tangent line to the parametric curve $x=e^{\sqrt{3}}, y=-\boldsymbol{t}^{4}+t$ at the point corresponding to $t=1$.
23. Find $y^{\prime \prime}$ if $x^{8}+y^{8}=1$.
24. Find an equation for the line tangent to the curve $y^{3}+3 x^{2} y+x^{3}=15$ at $(1,2)$.
25. Use implicit differentiation to find an equation of the tangent line to the curve $3\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right)$
at the point $(4,2)$. Give your answer in the form $y=m x+b$
26. At what point on the curve $y=12 x^{2 / 3}-4 x$ is the tangent line horizontal?
27. Derive a simple formula for the derivative $\frac{a}{2 x}\left(\sinh ^{-1} x\right)$
28. Find the points on the hyperbola $x^{2}-2 y^{2}=1$ where the tangent line has slope $=2$.
29. Let $y=\frac{\ln 8 x}{x^{2}}$.
a.
b.

Find $y^{t}(x)$
Find $y^{\prime \prime}(x)$
30. Find a parabola that passes through $(1,10)$ and whose tangent lines at $x=-2$ and $x=1$ are -5 and 7 , respectively.
31. The figure shows a lamp located 31 units to the right of the γ-axis and a shadow created by the elliptical region $x^{2}+8 y^{2} \leq 9$. If the point $(-9,0)$ is on the edge of the shadow, how far above the x-axis is the lamp located?

32. Find an equation for the line tangent to the curve described by the parametric equations

$$
\begin{aligned}
& x=\sin (3 t)-\cos t \\
& y=\cos (3 t)-\sin t
\end{aligned}
$$

where $t=\frac{\pi}{6}$.
33. Find y^{t} if $x^{s y}=y^{7 x}$.
34. Use a linear approximation (or differentials) to estimate $\frac{1}{99996}$.
35. A particle moves on a horizontal line so that its coordinate at time t is $x=e^{-t / 4} \cos (2 t)$.
a. Find the velocity and acceleration functions.
b. Find the distance the particle travels in the time $0 \leq t \leq \pi$.
c. When is the particle speeding up? When is it slowing down?
36. Consider $f(x)=\sqrt[3]{999+x^{3}}$
a. Find the linearization of at $x=9$ and use it to approximate $\sqrt[3]{1999}$.
b. What is the $\%$ error in your approximation?
37. Find the coordinates of the points where the line through $(0,3)$ is tangent to the unit circle, $x^{2}+y^{2}=1$.

