Math 15— Discrete Structures— 84.5 — Homework 16 Solutions

4.5#20: License plates in India begin with a code indentifying the state and district where the vehicle is
registered, followed by a four-digit identification number. Once the sequence reaches 9999, a leter from the set
{4, B, ..., Z} is added (in order), and once these run out, additional letters are added and so on. So the sequence
of identification numbers proceeds as follows: 0000, 0001,
...,9999,A0000,A0001,...,A9999,B0000,B0001,...,B9999,....,Z0000,20001,...,729999,AA0000,AA0001,...

Write an algorithm in pseudo code that will print out the first 500,000 license plates for a given district in India.

ANS: We want to print the 10000 which are just numbers followed by the next 260000 which are a letter
followed by 4 numbers, that will give us 270000, so we need another 230000 — and since the 23 letter of the
alphabet is W, we can get these by preceeding A0000, A0001, ..., W9999 by an “A”. The code should look like
this:

Let A ={A,B,..,Z} and let N ={0,1,2,3,4,5,6,7,8,9}.

for weN do
for x€N do
for y €N do
for z€N do
print wxyz
for a€A4 do
for weN do
for xe N do
for y€N do
for z€ N do
print awxyz

for a€{4,B,...W} do
for weN do
for x € N do
for y€N do
for ze N do
print Aawxyz

4.5#24: Let xq,x,,...,x, be an array. Consider the following algorithm.
for i€{1,2, .., ln2t do
rt < x
Xi € Xp-it1

L — t

Xn—i+1

a. How many <— operations does this algorithm perform? Your answer should be a function of n.
SOLN: 3- ||

b. What does this algorithm do to the array?

SOLN: It continually swaps the ith element with the n + 1 —ith element starting with the first
and continuing up until, but not including the middle, effectively reversing the array.

4.5#26: Let xq,x,,...,x, be an array of integers. Write a pseudocode algorithm that will compute the
probability that a randomly chosen element of this array will be odd.



SOLN:

c<0

for i €{1,2,...,n) do
if ximod2=1 then
c—c+1

print c/n

4.5#28: Let Write a pseudocode algorithm that will print out all strings of four symbols from the set
A ={A,B, ..., Z} such that no symbol is repeated. How many such strings are there?

ANS: There are 26 - 25 - 24 - 23 = 358800 permutations of 4 symbols chosen from a set of 26.
for weA do
for x € A\{w} do
for y € A\{w,x} do
for z € A\{w,x,y} do
print wxyz

4.5#29: Write a pseudocode algorithm that prints out all allowable colorings of the vertices a, b, ¢, and d of a
graph in the shape of a quadrilateral as a four-symbol string using the symbols in C = {R, G, B,V}. Use the two
disjoint cases: when b and d are the same color, and when b and d are different colors. A coloring where
adjacent vertices are the same color is not allowed.

SOLN: Let C = {R,G,B,V}

for a€C do #3 or 4 colors
for b € C\{a} do
for d € C\{a, b} do
for c € C\{b,d} do
print abcd
for a€C do #2 or 3 colors
for b€ C\{a} dp
for c € C\{b}do

print abch
If you trace the first one you get For the second, the trace looks like this:

a b ¢ d This pattern will continue like a |b |lc |d
R |G |R |B .

this fora=G, B and V, R |G |R |G
R |G |V |B . )

producing a total of 48 different R IG |[B |G
R |G B v colorings. For each of the R |16 |v |G
R |G |R |V 4-3-2 =24 choices fora, b R |B IR |B
R |B R |G| and d, there are 2 choices for C. R IB |G |B
R |[B |V |G R B8 v B
R |B | R |V | Note that the abcd pattern where
R |B |G | V]| b= dwill always produce -.and soon...

) ysp For each of the 4 - 3 = 12 choices for a and b there are

R |V R |G| different outcomes than the 3 choices for C, so there are 36 of these type.
R |V |B |G| abchpattern, whose sequences ’
R |V |R | B | areproduced by the second
R |V |G B | algorithm.




4.5#30: Repeat the previous exercise using two different colors, three different colors and four different colors.

SOLN: Let € = {R,G,B,V}

for a€(C do #only two colors
for b€ C\{a} do
print abab
for a€C do #3 colors
for b € C\{a} dp
for d € C\{a,b}do
print abad
for a €C do #these are isomorphic to the previous, depending..
for b € C\{a} do
for d € C\{a, b} do
print bada
for a€eC do #4 colors
for b€ C\{a} do
for d € C\{a, b} do
for e € C\{a,b,d} do
print abde



