Outline:

- 4.1: The Unit Circle $x^2 + y^2 = 1$.
 - Given the one of the coordinates of a point on the circle and the quadrant of the point, find the coordinates of the other point.
 - Find the terminal point P(x,y) corresponding to an arclength *t* on the circle extending either counterclockwise (positive direction) or clockwise (negative direction) from (1,0) including the

standard positions where t is either a multiple of $\frac{\pi}{6}$ or $\frac{\pi}{4}$.

- Find the reference number \overline{t} corresponding to any unit circle arclength t, including $|t| > 2\pi$.
- Use the reference number to find terminal points.
- 4.2: The Trigonometric Functions of Real Numbers
 - Definitions of the six trig functions of arclength t from (1,0) on the unit circle in terms of the coordinates of the terminal point P(x,y).
 - Relationship to the trigonometric functions of angles and the radian measure of an angle (page 239)
 - Domain and range of the trigonometric functions.
 - Signs of the trigonometric functions as determined by the quadrant of the terminal point P(x,y).
 - Reciprocal identities.
 - Even and odd properties of trigonometric functions.
 - Pythagorean Identities.
 - Using the identities to write on trig function in terms of another.
- 4.3: Trigonometric Graphs
 - Periodic properties of sine and cosine.
 - Transformations of sine and cosine.
 - Amplitude and period from vertical stretch/shrink and horizontal stretch/shrink.
 - Phase shift from horizontal shift.
 - Graphing sums of sine and cosine with different periods.
 - Decaying and variable amplitudes.
 - Oscillation inside an envelope: $y = A(t)\sin(b(t-c))$
- 4.4: More Trigonometric Graphs
 - Periodic properties of tan, sec, cot and csc functions.
 - Period of $f(x) = \tan(b(x-c))$ and $g(x) = \cot(b(x-c))$
 - Period of $f(x) = \sec(b(x-c))$ and $g(x) = \csc(b(x-c))$
 - Graphing $f(x) = A \sec(b(x-c))$ and $g(x) = A \csc(b(x-c))$
- 4.5: Modeling Harmonic Motion
 - Simple Harmonic Motion
 - Damped Harmonic Motion

- 1. Express the arclength, t, on the unit circle of an angle swept out by rotating the positive x axis 36° about the circle's center in the counterclockwise direction. Use a calculator to approximate the coordinates of the terminal point P(x,y) corresponding to this t to the nearest ten thousandth.
- 2. Consider the point P(x,y) on the unit circle corresponding to an angle with radian measure $t = \frac{5\pi}{c}$.
 - a. What is the degree measure of this angle?
 - b. What is the degree measure of a supplementary angle (supplementary angles sum to 180°).
 - c. What is the degree measure of a complementary angle (supplementary angles sum to 90°).
 - d. Find exact values for each of the following and illustrate its position on the unit circle:
 - i. $\cos(t)$ ii. $\cos(t+\pi)$ iii $\cos(t-\pi)$ iv. $\cos\left(t-\frac{\pi}{2}\right)$ v. $\cos\left(t+\frac{\pi}{2}\right)$

3. Suppose a terminal point determined by *t* is the point $P(x, y) = \left(-\frac{7}{25}, -\frac{24}{25}\right)$.

- a. Verify that the point lies on the unit circle.
- b. What are the coordinates of the terminal point for $t + \pi$?
- c. What are the coordinates of the terminal point for $t + \frac{\pi}{2}$?
- 4. Suppose a terminal point determined by t is P(x,y) on the unit circle, where $\frac{y}{x} = -\frac{15}{8}$.
 - a. What quadrants could *P* be in?
 - b. What are the absolute values of the coordinates of *x* and *y*?
 - c. Find exact representations for the values of $\csc(t)$ and $\cot(t)$.
- 5. Suppose a terminal point P(x,y) in QIV on the unit circle has y-coordinate $-\frac{\sqrt{11}}{5}$. Find
 - a. $\sec(t)$ b. $\tan(t)$
- 6. Find the reference number for each and plot its position on the unit circle together with exact values (in simplest radical form) for the *x* and *y* coordinates of the point.

a.
$$t = \frac{53\pi}{6}$$
 b. $t = \frac{53\pi}{4}$

- 7. Find the period and equations for at least two asymptotes and graph the function $f(t) = 1 + \tan(3t+1)$. Sketch a graph showing the functions intercepts and how the function approaches the asymptotes.
- 8. Suppose a terminal point P(x,y) on the unit circle has $y = \frac{12}{37}$. What are two different possible values for x? What quadrants are these in?

- 9. Suppose that $1 \le t \le 2.5$. Estimate the corresponding intervals for the values of $\cos(t)$ and $\sin(t)$ and highlight these on the diagram at right:
- 10. Find the amplitude, period and phase shift of the $W(t) = 2 \pm 2 \sin\left(2\pi t \frac{\pi}{2}\right)$ and sketch a graph

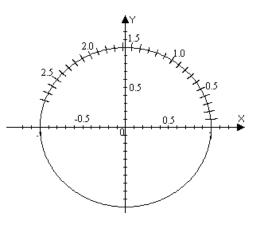
$$W(t) = 2 + 2 \sin \left(\frac{2\pi t - ---}{6} \right)$$
 and sketch a graph

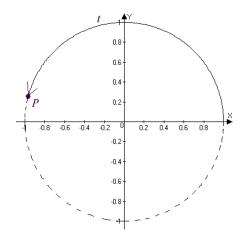
showing at least one wave form. Be careful scale and label axes in your graph.

- 11. Suppose a terminal point P(x,y) as shown at a distance *t* along the unit circle has
 - y-coordinate $\frac{\sqrt{5}}{9}$. Find a. $\sin(t)$ b. $\tan(t)$
- 12. Find an exact value for each of the following and show its position on the unit circle.

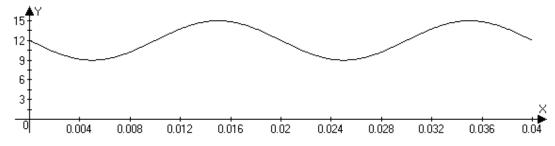
a.
$$\sin\left(\frac{5\pi}{4}\right)$$

b. $\tan\left(\frac{5\pi}{6}\right)$





- 13. Express cos(t) in terms of csc(t), if the terminal point is in quadrant IV.
- 14. Find the amplitude, period and phase shift of the $W(t) = 117 \sin\left(120\pi t \frac{\pi}{2}\right)$ and sketch a graph showing at least one wave form. Be careful scale and label axes in your graph.
- 15. Find the period and at least two asymptotes and graph the function $f(t) = \frac{\tan(4t)}{\sqrt{3}}$.
- 16. Find sinusoidal formula which fits the graph shown below:



17. Consider the function $f(x) = 2e^{-x}\cos(4x)$. Sketch graphs for $y = 2e^{-x}$, $y = -2e^{-x}$ and y = f(x) together showing two oscillations of the cosine function between these curves.