Math 5 - Trigonometry - Chapter 4 Test Review- fall '06
Outline:

- 4.1: The Unit Circle $x^{2}+y^{2}=1$.
- Given the one of the coordinates of a point on the circle and the quadrant of the point, find the coordinates of the other point.
- Find the terminal point $P(x, y)$ corresponding to an arclength t on the circle extending either counterclockwise (positive direction) or clockwise (negative direction) from (1,0) including the standard positions where t is either a multiple of $\frac{\pi}{6}$ or $\frac{\pi}{4}$.
- Find the reference number \bar{t} corresponding to any unit circle arclength t, including $|t|>2 \pi$.
- Use the reference number to find terminal points.
- 4.2: The Trigonometric Functions of Real Numbers
- Definitions of the six trig functions of arclength t from $(1,0)$ on the unit circle in terms of the coordinates of the terminal point $P(x, y)$.
- Relationship to the trigonometric functions of angles and the radian measure of an angle (page 239)
- Domain and range of the trigonometric functions.
- Signs of the trigonometric functions as determined by the quadrant of the terminal point $P(x, y)$.
- Reciprocal identities.
- Even and odd properties of trigonometric functions.
- Pythagorean Identities.
- Using the identities to write on trig function in terms of another.
- 4.3: Trigonometric Graphs
- Periodic properties of sine and cosine.
- Transformations of sine and cosine.
- Amplitude and period from vertical stretch/shrink and horizontal stretch/shrink.
- Phase shift from horizontal shift.
- Graphing sums of sine and cosine with different periods.
- Decaying and variable amplitudes.
- Oscillation inside an envelope: $y=A(t) \sin (b(t-c))$
- 4.4: More Trigonometric Graphs
- Periodic properties of tan, sec, cot and csc functions.
- Period of $f(x)=\tan (b(x-c))$ and $g(x)=\cot (b(x-c))$
- Period of $f(x)=\sec (b(x-c))$ and $g(x)=\csc (b(x-c))$
- Graphing $f(x)=A \sec (b(x-c))$ and $g(x)=A \csc (b(x-c))$
- 4.5: Modeling Harmonic Motion
- Simple Harmonic Motion
- Damped Harmonic Motion

1. Express the arclength, t, on the unit circle of an angle swept out by rotating the positive x axis 36° about the circle's center in the counterclockwise direction. Use a calculator to approximate the coordinates of the terminal point $P(x, y)$ corresponding to this t to the nearest ten thousandth.
2. Consider the point $P(x, y)$ on the unit circle corresponding to an angle with radian measure $t=\frac{5 \pi}{6}$.
a. What is the degree measure of this angle?
b. What is the degree measure of a supplementary angle (supplementary angles sum to 180°).
c. What is the degree measure of a complementary angle (supplementary angles sum to 90°).
d. Find exact values for each of the following and illustrate its position on the unit circle:
i. $\quad \cos (t)$
ii. $\cos (t+\pi)$
iii $\cos (t-\pi)$
iv. $\cos \left(t-\frac{\pi}{2}\right)$
v. $\quad \cos \left(t+\frac{\pi}{2}\right)$
3. Suppose a terminal point determined by t is the point $P(x, y)=\left(-\frac{7}{25},-\frac{24}{25}\right)$.
a. Verify that the point lies on the unit circle.
b. What are the coordinates of the terminal point for $t+\pi$?
c. What are the coordinates of the terminal point for $t+\frac{\pi}{2}$?
4. Suppose a terminal point determined by t is $P(x, y)$ on the unit circle, where $\frac{y}{x}=-\frac{15}{8}$.
a. What quadrants could P be in?
b. What are the absolute values of the coordinates of x and y ?
c. Find exact representations for the values of $\csc (t)$ and $\cot (t)$.
5. Suppose a terminal point $P(x, y)$ in QIV on the unit circle has y-coordinate $-\frac{\sqrt{11}}{5}$. Find
a. $\quad \sec (t)$
b. $\tan (t)$
6. Find the reference number for each and plot its position on the unit circle together with exact values (in simplest radical form) for the x and y coordinates of the point.
a. $t=\frac{53 \pi}{6}$
b. $t=\frac{53 \pi}{4}$
7. Find the period and equations for at least two asymptotes and graph the function $f(t)=1+\tan (3 t+1)$. Sketch a graph showing the functions intercepts and how the function approaches the asymptotes.
8. Suppose a terminal point $P(x, y)$ on the unit circle has $y=\frac{12}{37}$. What are two different possible values for x ? What quadrants are these in?
a.
9. Suppose that $1 \leq t \leq 2.5$. Estimate the corresponding intervals for the values of $\cos (t)$ and $\sin (t)$ and highlight these on the diagram at right:
10. Find the amplitude, period and phase shift of the $W(t)=2+2 \sin \left(2 \pi t-\frac{\pi}{6}\right)$ and sketch a graph showing at least one wave form. Be careful scale and label axes in your graph.

11. Suppose a terminal point $P(x, y)$ as shown at a distance t along the unit circle has y-coordinate $\frac{\sqrt{5}}{9}$. Find
a. $\quad \sin (t)$
b. $\tan (t)$
12. Find an exact value for each of the following and show its position on the unit circle.
a. $\quad \sin \left(\frac{5 \pi}{4}\right)$

b. $\tan \left(\frac{5 \pi}{6}\right)$
13. Express $\cos (t)$ in terms of $\csc (t)$, if the terminal point is in quadrant IV.
14. Find the amplitude, period and phase shift of the $W(t)=117 \sin \left(120 \pi t-\frac{\pi}{2}\right)$ and sketch a graph showing at least one wave form. Be careful scale and label axes in your graph.
15. Find the period and at least two asymptotes and graph the function $f(t)=\frac{\tan (4 t)}{\sqrt{3}}$.
16. Find sinusoidal formula which fits the graph shown below:

17. Consider the function $f(x)=2 e^{-x} \cos (4 x)$. Sketch graphs for $y=2 e^{-x}, y=-2 e^{-x}$ and $y=f(x)$ together showing two oscillations of the cosine function between these curves.
