Math 5 - Trigonometry - fall '12 - Chapter 2 Test Name \qquad
Show all work for credit. Write all responses on separate paper. Do not use a calculator.

1. Find the domain of each of the following functions.
a. $f(x)=\sqrt{8-x}$
b. $g(x)=\frac{1}{8-x^{2}}$
2. Consider the line passing through the origin $(0,0)$ and a point on the parabola described by $f(x)=(x-4)^{2}+2$
a. Using the point $(h, f(h))$ on the function and the point $(0,0)$ at the origin, show that a formula for the function $m(h)$ that describes the slope of this line as a function of h is $m(h)=h-8+\frac{18}{h}$.
b. Evaluate and simplify $m(3), m(4)$ and $m(5)$.
3. Compute and simplify the average rate of change of $f(x)=2 x^{3}$ over the given interval. Hint: recall that the average rate of change is of $y=f(x)$ on the interval $[a, b]$ is the slope of the secant line connecting ($a, f(a)$) with $(b, f(b))$.
a. $[0, h]$
b. [-h, h]
4. Consider the quadratic $f(x)=3 x^{2}-6 x+2$
a. Express the quadratic function in standard (vertex) form: $y=a(x-h)^{2}+k$
b. Find the coordinates of the x-intercepts.
c. Express the quadratic function in factored form: $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$
d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
5. Find the range of the given function and express that in interval notation.
a. $\quad f(x)=-4(x-1)^{2}+10$
b. $f(x)=-2 x^{2}+8 x+1$
6. Consider the quadratic $f(x)=5-\frac{1}{2}(x+3)^{2}$. What sequence of vertical shift, reflection, vertical stretch, and horizontal shift is required to transform this function to $y=x^{2}$?
7. Suppose $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{x-2}$.

Find a formula for and determine the domain of $(g \circ f)(x)$
8. Find a formula for the inverse function of $f(x)=\frac{1}{2} x+1$ and sketch a graph for $f^{-1}(x)$ and $f(x)$ together showing the symmetry through the line $y=x$.

Math 5 - Trigonometry - fall '12-Chapter 2 Test Solutions

1. Find the domain of each of the following functions.
a. $f(x)=\sqrt{8-x}$

ANS: The domain is $(-\infty, 8]$
b. $g(x)=\frac{1}{8-x^{2}}$

ANS: The domain is $(-\infty,-2 \sqrt{2}) \cup(-2 \sqrt{2}, 2 \sqrt{2}) \cup(2 \sqrt{2}, \infty)=\{x \mid x \neq \pm 2 \sqrt{2}\}$
2. Consider the line passing through the origin $(0,0)$ and a point on the parabola described by $f(x)=(x-4)^{2}+2$
a. Using the point $(h, f(h))$ on the function and the point $(0,0)$ at the origin, show that a formula for the function $m(h)$ that describes the slope of this line as a function of h is $m(h)=h-8+\frac{18}{h}$.
ANS: The slope is $\frac{f(h)-0}{h-0}=\frac{(h-4)^{2}+2}{h}=\frac{h^{2}-8 h+18}{h}=h-8+\frac{18}{h}$
b. Evaluate and simplify $m(3), m(4)$ and $m(5)$.

ANS: $m(3)=3-8+6=1, m(4)=4-8+\frac{9}{2}=\frac{1}{2}$, and $m(5)=5-8+\frac{18}{5}=\frac{3}{5}$
Do you see what happened there? It went down at first... and then....went back up some!
3. Compute and simplify the average rate of change of $f(x)=2 x^{3}$ over the given interval. Hint: recall that the average rate of change is of $y=f(x)$ on the interval $[a, b]$ is the slope of the secant line connecting $(a, f(a))$ with $(b, f(b))$.
a. $[0, h]$

ANS: $\frac{f(h)-f(0)}{h-0}=\frac{2 h^{3}}{h}=2 h^{2}$
b. [-h, h]

ANS: $\frac{f(h)-f(-h)}{h-(-h)}=\frac{2 h^{3}-\left(-2 h^{3}\right)}{2 h}=2 h^{2}$ Hey...it's the same!
4. Consider the quadratic $f(x)=3 x^{2}-6 x+2$
a. Express the quadratic function in standard (vertex) form: $y=a(x-h)^{2}+k$

SOLN: $f(x)=3\left(x^{2}-2 x\right)+2=3\left(x^{2}-2 x+1\right)+2-3=3(x-1)^{2}-1$
b. Find the coordinates of the x-intercepts.

SOLN: At the x-intercepts, $f(x)=0 \Leftrightarrow 3(x-1)^{2}=1 \Leftrightarrow(x-1)^{2}=\frac{1}{3} \Leftrightarrow x-1= \pm \frac{\sqrt{3}}{3}$
So the intercepts are where $x=1 \pm \frac{\sqrt{3}}{3}$
c. Express the quadratic function in factored form: $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$

$$
y=3\left(x-1+\frac{\sqrt{3}}{3}\right)\left(x-1-\frac{\sqrt{3}}{3}\right)
$$

d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.

5. Find the range of the given function and express that in interval notation.
a. $f(x)=-4(x-1)^{2}+10$

ANS: $(-\infty, 10]$
b. $f(x)=-2 x^{2}+8 x+1$

ANS: $f(x)=-2 x^{2}+8 x+1=-2(x-2)^{2}+9$ so the range is $(-\infty, 9]$
6. Consider the quadratic $f(x)=5-\frac{1}{2}(x+3)^{2}$. What sequence of vertical shift, reflection, vertical stretch, and horizontal shift is required to transform this function to $y=x^{2}$?
ANS: Shift down 5 to get $y=-\frac{1}{2}(x+3)^{2}$, then reflect across the x-axis to get
$y=\frac{1}{2}(x+3)^{2}$, then stretch vertically by a factor of 2 to get $y=(x+3)^{2}$. Finally shift 3 to the right to get $y=x^{2}$.
7. Suppose $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{x-2}$.

Find a formula for and determine the domain of $(g \circ f)(x)$
ANS: $(g \circ f)(x)=g(\sqrt{x})=\frac{1}{\sqrt{x}-2}$ has domain $[0,4) \cup(4, \infty)$.
8. Find a formula for the inverse function of $f(x)=\frac{1}{2} x+1$ and sketch a graph for $f^{-1}(x)$ and $f(x)$ together showing the symmetry through the line $y=x$. ANS: Following the procedure to find a formula for the inverse function, we write, $y=\frac{1}{2} x+1$ and solve for x : $\frac{1}{2} x=y-1 \Leftrightarrow x=2 y-2$, and then swap variables, $x \leftrightarrow y$ to get

$$
f^{-1}(x)=2 x-2
$$

