Math 5 – Trigonometry – fall '12 – Chapter 2 Test Name_

Show all work for credit. Write all responses on separate paper. Do not use a calculator.

1. Find the domain of each of the following functions.

a.
$$f(x) = \sqrt{8 - x}$$

b.
$$g(x) = \frac{1}{8-x^2}$$

- 2. Consider the line passing through the origin (0,0) and a point on the parabola described by $f(x) = (x-4)^2 + 2$
 - a. Using the point (h, f(h)) on the function and the point (0,0) at the origin, show that a formula for the function m(h) that describes the slope of this line as a function of h is $m(h) = h 8 + \frac{18}{h}$.
 - b. Evaluate and simplify m(3), m(4) and m(5).
- 3. Compute and simplify the average rate of change of $f(x) = 2x^3$ over the given interval. Hint: recall that the average rate of change is of y = f(x) on the interval [a, b] is the slope of the secant line connecting (a, f(a)) with (b, f(b)).
 - a. [0, h]
 - b. [-h, h]
- 4. Consider the quadratic $f(x) = 3x^2 6x + 2$
 - a. Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$
 - b. Find the coordinates of the *x*-intercepts.
 - c. Express the quadratic function in factored form: $y = a(x r_1)(x r_2)$
 - d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
- 5. Find the range of the given function and express that in interval notation.

a.
$$f(x) = -4(x-1)^2 + 10$$

b.
$$f(x) = -2x^2 + 8x + 1$$

- 6. Consider the quadratic $f(x) = 5 \frac{1}{2}(x+3)^2$. What sequence of vertical shift, reflection, vertical stretch, and horizontal shift is required to transform this function to $y = x^2$?
- 7. Suppose $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x-2}$.

Find a formula for and determine the domain of $(g \circ f)(x)$

8. Find a formula for the inverse function of $f(x) = \frac{1}{2}x + 1$ and sketch a graph for $f^{-1}(x)$ and f(x) together showing the symmetry through the line y = x.

Math 5 – Trigonometry – fall '12 – Chapter 2 Test Solutions

- 1. Find the domain of each of the following functions.
 - a. $f(x) = \sqrt{8 x}$

ANS: The domain is $(-\infty, 8]$

b. $g(x) = \frac{1}{8-x^2}$

ANS: The domain is $\left(-\infty, -2\sqrt{2}\right) \cup \left(-2\sqrt{2}, 2\sqrt{2}\right) \cup \left(2\sqrt{2}, \infty\right) = \left\{x \mid x \neq \pm 2\sqrt{2}\right\}$

- 2. Consider the line passing through the origin (0,0) and a point on the parabola described by $f(x) = (x-4)^2 + 2$
 - a. Using the point (h, f(h)) on the function and the point (0,0) at the origin, show that a formula for the function m(h) that describes the slope of this line as a function of h is $m(h) = h 8 + \frac{18}{h}$.

ANS: The slope is $\frac{f(h)-0}{h-0} = \frac{(h-4)^2+2}{h} = \frac{h^2-8h+18}{h} = h-8+\frac{18}{h}$

b. Evaluate and simplify m(3), m(4) and m(5).

ANS: m(3) = 3 - 8 + 6 = 1, $m(4) = 4 - 8 + \frac{9}{2} = \frac{1}{2}$, and $m(5) = 5 - 8 + \frac{18}{5} = \frac{3}{5}$

Do you see what happened there? It went down at first...and then...went back up some!

- 3. Compute and simplify the average rate of change of $f(x) = 2x^3$ over the given interval. Hint: recall that the average rate of change is of y = f(x) on the interval [a, b] is the slope of the secant line connecting (a, f(a)) with (b, f(b)).
 - a. [0, h]

ANS: $\frac{f(h)-f(0)}{h-0} = \frac{2h^3}{h} = 2h^2$

b. [-h, h]

ANS: $\frac{f(h)-f(-h)}{h-(-h)} = \frac{2h^3-(-2h^3)}{2h} = 2h^2$ Hey...it's the same!

- 4. Consider the quadratic $f(x) = 3x^2 6x + 2$
 - a. Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$

SOLN: $f(x) = 3(x^2 - 2x) + 2 = 3(x^2 - 2x + 1) + 2 - 3 = 3(x - 1)^2 - 1$

b. Find the coordinates of the *x*-intercepts.

SOLN: At the x-intercepts, $f(x) = 0 \Leftrightarrow 3(x-1)^2 = 1 \Leftrightarrow (x-1)^2 = \frac{1}{3} \Leftrightarrow x-1 = \pm \frac{\sqrt{3}}{3}$

So the intercepts are where $x = 1 \pm \frac{\sqrt{3}}{3}$

c. Express the quadratic function in factored form: $y = a(x - r_1)(x - r_2)$

 $y = 3\left(x - 1 + \frac{\sqrt{3}}{3}\right)\left(x - 1 - \frac{\sqrt{3}}{3}\right)$

d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.

- 5. Find the range of the given function and express that in interval notation.
 - a. $f(x) = -4(x-1)^2 + 10$

ANS: $(-\infty, 10]$

b. $f(x) = -2x^2 + 8x + 1$

ANS: $f(x) = -2x^2 + 8x + 1 = -2(x - 2)^2 + 9$ so the range is $(-\infty, 9]$

- 6. Consider the quadratic $f(x) = 5 \frac{1}{2}(x+3)^2$. What sequence of vertical shift, reflection, vertical stretch, and horizontal shift is required to transform this function to $y = x^2$?

 ANS: Shift down 5 to get $y = -\frac{1}{2}(x+3)^2$, then reflect across the x-axis to get $y = \frac{1}{2}(x+3)^2$, then stretch vertically by a factor of 2 to get $y = (x+3)^2$. Finally shift 3 to the right to get $y = x^2$.
- 7. Suppose $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x-2}$.

Find a formula for and determine the domain of $(g \circ f)(x)$

ANS: $(g \circ f)(x) = g(\sqrt{x}) = \frac{1}{\sqrt{x}-2}$ has domain $[0,4) \cup (4,\infty)$.

8. Find a formula for the inverse function of $f(x) = \frac{1}{2}x + 1$ and sketch a graph for $f^{-1}(x)$ and f(x) together showing the symmetry through the line y = x. ANS: Following the procedure to find a formula for the inverse function, we write, $y = \frac{1}{2}x + 1$ and solve for x: $\frac{1}{2}x = y - 1 \Leftrightarrow x = 2y - 2$, and then swap variables, $x \leftrightarrow y$ to get

$$f^{-1}(x) = 2x - 2$$

