Math 5 – Trigonometry – Geometry Test – Fall '12 Name\_\_\_\_\_ Show your work for credit. Except for problems 1 and 2, write all responses on separate paper. Do not use a calculator.

1. (HA Theorem) Given right triangles  $\triangle ABC$ ,  $\triangle DEF$  with  $\angle A$  and  $\angle D$  right angles and  $\overline{BC} \cong \overline{EF}$  and  $\angle C \cong \angle F$ ; fill in the missing statements to complete the proof that  $\triangle ABC \cong \triangle DEF$ 



| Statement | Reason                         |
|-----------|--------------------------------|
|           | Given                          |
|           | All right angles are congruent |
|           | Given                          |
|           | AAS                            |

2. Theorem: The median from the right angle in a right triangle is one-half the length of the hypotenuse. Given:  $\triangle ABC$  with right angle  $\angle ACB$  and median  $\overline{CD}$ . Prove:  $CD = \frac{1}{2}AB$ 



| Statement                                                                | Reason                                                                         |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Draw $\overrightarrow{DE}    \overrightarrow{AC}$                        |                                                                                |
| $\triangle ABC$ with right angle $\angle ACB$ and median $\overline{CD}$ |                                                                                |
| BD = AD                                                                  | Definition of median and def. of $\cong$ segments.                             |
| $\frac{AD}{CE}$                                                          | A line    to one side and intersecting two sides of a                          |
| DB EB                                                                    | triangle dives the sides into proportional segments.                           |
| $\overline{DE} \cong \overline{DE}$                                      |                                                                                |
|                                                                          | If two legs of two right $\Delta s$ are $\cong$ , the $\Delta s$ are $\cong$ . |
| BD = CD                                                                  |                                                                                |
| BD + DA = BA                                                             |                                                                                |
| BD + BD = BA                                                             |                                                                                |
| 2BD = BA                                                                 |                                                                                |
|                                                                          | Substitution postulate                                                         |
| $CD = \frac{1}{2}BA$                                                     |                                                                                |

3. In the figure at right,  $\overline{BC} || \overline{DE}$ . What is the degree measure of x so that  $\angle ABC = 5x$  and  $\angle CDE = 2x + 9$ ?



- 4. Find the altitude of an equilateral triangle with sides of length 4.
- 5. Draw an isosceles right triangle with hypotenuse of length 8 inches. Find the perimeter and area of this triangle.
- 6. Consider the diagram at right and assume that  $\overline{AB} \perp \overline{AC}$  and that  $\overline{AD} \perp \overline{BC}$ .
  - a. Prove that  $\triangle CAD \sim \triangle ABD$
  - b. If AC = 15 and  $AD = \frac{120}{17}$ , find the area of  $\triangle ABD$ . Hint: If you find *CD* then you'll have the ratios  $\frac{\text{hypotenuse}}{\text{short leg}}, \frac{\text{hypotenuse}}{\text{long leg}}, \frac{\text{long leg}}{\text{short leg}}$  for all three triangles







- 8. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right.
  - a. What is the measure of central angle  $\angle COD$ ?
  - b. If CD = 8, what is the area of the circle?



## Math 5 – Trigonometry – Geometry Test Solutions – Fall '12



 Theorem: The median from the right angle in a right triangle is one-half the length of the hypotenuse.
 Given: ΔABC with right angle ∠ACB and median CD.
 Prove: CD = ½ AB



| Statement                                                                | Reason                                                                         |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Draw $\overrightarrow{DE}    \overrightarrow{AC}$                        | Parallel postulate.                                                            |
| $\triangle ABC$ with right angle $\angle ACB$ and median $\overline{CD}$ | Given                                                                          |
| BD = AD                                                                  | Definition of median and def. of $\cong$ segments.                             |
| $\frac{AD}{CE}$                                                          | A line    to one side and intersecting two sides of a triangle dives           |
| DB EB                                                                    | the sides into proportional segments.                                          |
| $\overline{DE} \cong \overline{DE}$                                      | Reflexive Postulate                                                            |
| $\Delta BDE \cong \Delta CDE$                                            | If two legs of two right $\Delta s$ are $\cong$ , the $\Delta s$ are $\cong$ . |
| BD = CD                                                                  | СРСТС                                                                          |
| BD + DA = BA                                                             | Partition Postulate                                                            |
| BD + BD = BA                                                             | Substitution Postulate                                                         |
| 2BD = BA                                                                 | Distributive Postulate                                                         |
| 2CD = BA                                                                 | Substitution postulate                                                         |
| $CD = \frac{1}{2} BA$                                                    | Division Postulate                                                             |

3. In the figure at right,  $\overline{BC} || \overline{DE}$ . What is the degree measure of x so that  $\angle ABC = 5x$  and  $\angle CDE = 2x + 9$ ?



SOLN:  $\angle CBD = 180 - 5x$  (*A-B-C* is straight) and  $\angle BCD = 2x + 9$  (when *CD* cuts  $\overline{BC} || \overline{DE}$ , alternate interior angles are congruent). Since the sum of the interior angles of a triangle is 180,  $180 - 5x + 90 + 2x + 9 = 180 \Leftrightarrow 3x = 99$  so x = 33. Alternatively, note that when  $\overline{BD}$  cuts  $\overline{BC} || \overline{DE}$ , corresponding angles are congruent, so  $\angle ABC = \angle BDE$ . Thus 5x = 2x + 99 and so x = 33.

4. Find the altitude of an equilateral triangle with sides of length 4. SOLN:

Draw  $\overline{BD} \perp \overline{AC}$  Then, since base angles  $\angle A \cong \angle C$  and  $\overline{BD} \cong \overline{BD}$ ,  $\triangle ABD \cong \triangle CBD$  by AAS. Therefore  $\overline{AD} \cong \overline{CD}$  (CPCTC) so that AD = 2. Now using Pythagoras' theorem, we have the altitude BD satisfies  $2^2 + BD^2 = 4^2$  so that  $BD^2 = 12$  and  $BD = 2\sqrt{3}$ . As a shortcut, one could observe that the altitude is the longer leg of a 30-60-90 triangle and so its length is  $\sqrt{2}$  times the shorter leg.



5. Draw an isosceles right triangle with hypotenuse of length 8 inches. Find the perimeter and area of this triangle.

Е

SOLN: 8 inches extends almost across the entire width of the page. Use Pythagoras' theorem to find the legs:

Let x = the length of a leg. Then  $x^2 + x^2 = 8^2$  so  $2x^2 = 64$  or  $x = \sqrt{32} = 4\sqrt{2}$ 

Thus the perimeter is  $8 + 2x = 8 + 8\sqrt{2}$  inches.

The area is half the area of a square of side  $4\sqrt{2}$ , that is

area  $=\frac{1}{2}(4\sqrt{2})^2 = 16$  square inches.

- 6. Consider the diagram at right and where  $\overline{AB} \perp \overline{AC}$  and  $\overline{AD} \perp \overline{BC}$ .
  - Reason Statement  $\angle ADC \cong \angle ADB \cong \angle CAB$ All rt  $\angle s$  are  $\cong$  $m \angle ADC = m \angle ADB = m \angle CAB$  $\cong \angle s$  have equal measure  $\angle B + \angle BAD + 90^\circ = 180^\circ$ The sum of interior angles  $\angle B + \angle C + 90^\circ = 180^\circ$ of a triangle is 180°.  $\angle CAD + \angle C + 90^\circ = 180^\circ$  $\angle B + \angle BAD = 90^{\circ}$  $\angle B + \angle C = 90^{\circ}$ Subtraction Postulate  $\angle CAD + \angle C = 90^{\circ}$  $\angle B + \angle BAD = \angle B + \angle C$ **Transitive Postulate**  $\angle B + \angle C = \angle CAD + \angle C$  $\angle BAD = \angle C$ Subtraction Postulate  $\angle B = \angle CAD$  $\Delta CAD \sim \Delta ABD$ AA
  - a. Prove that  $\triangle CAD \sim \triangle ABD$



b. If AC = 15 and  $AD = \frac{120}{17}$ , find the area of  $\triangle ABD$ . Hint: If you find *CD* then you'll have the

ratios  $\frac{\text{hypotenuse}}{\text{short leg}}, \frac{\text{hypotenuse}}{\text{long leg}}, \frac{\text{long leg}}{\text{short leg}}$  for all three triangles

SOLN: The area of  $\triangle ABD = \frac{1}{2}BD \cdot AD$ , so we'd like to find *BD*, but we'll follow the hint and first find *CD*. Using the Pythagorean theorem, we have

$$CD^{2} = 15^{2} - \left(\frac{120}{17}\right)^{2} = \left(15 - \frac{120}{17}\right)\left(15 + \frac{120}{17}\right) = \frac{255 - 120}{17} \cdot \frac{155 + 120}{17} = \frac{135 \cdot 275}{17^{2}}$$
$$= \frac{4125}{289}$$

Now,  $CD = \frac{5\sqrt{33}}{17}$ . Let x = BD. Now equating  $\frac{\log \log}{\operatorname{short} \log}$  in  $\Delta ABD \sim \Delta CAD \frac{120}{17x} = \frac{5(17)\sqrt{33}}{17(120)}$ , or simplifying,  $\frac{120}{17x} = \frac{\sqrt{33}}{24}$  and so  $x = \frac{(120)(24)}{17\sqrt{33}} = \frac{960\sqrt{33}}{187}$ . Finally, the area  $\Delta ABD = \frac{1}{2}BD \cdot AD = \frac{1}{2} \cdot \frac{960\sqrt{33}}{187} \cdot \frac{120}{17} = \frac{57600\sqrt{33}}{1309}$ . Wow, that was numerically challenging!

7. Consider quadrilateral *ABCD* shown at right and suppose we know that ∠*ADB* ≅ ∠*CBD*.
What type of quadrilateral can we deduce that *ABCD* is?



SOLN: When transversal  $\overline{BD}$  cut lines  $\overline{AD}$  and  $\overline{BC}$ , it makes alternate interior angles equal, so we can deduce that  $\overline{AD}||\overline{BC}$  so that ABCD is either a trapezoid (if  $\overline{AB} \not\parallel \overline{DC}$ ) or a parallelogram (if  $\overline{AB}||\overline{DC}$ ).

- 8. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right.
  - a. What is the measure of central angle  $\angle COD$ ? SOLN:  $\frac{360^{\circ}}{6} = 60^{\circ}$
  - b. If CD = 8, what is the area of the circle? SOLN:  $\triangle COD$  is equilateral, so its altitude,  $4\sqrt{3}$ , is the radius of the circle, so the area of the circle is  $\pi (4\sqrt{3})^2 = 48\pi$ .



I was interested in how students' homework scores on ILRN correlated with their test scores, so I produced this scatterplot (the outliers are removed) showing a significant positive correlation.

