Math 5 - Trigonometry - Geometry Test - Fall '12
Name
Show your work for credit. Except for problems 1 and 2, write all responses on separate paper. Do not use a calculator.

1. (HA Theorem) Given right triangles $\triangle A B C$, $\triangle D E F$ with $\angle A$ and $\angle D$ right angles and $\overline{B C} \cong \overline{E F}$ and $\angle C \cong \angle F$; fill in the missing statements to complete the proof that $\triangle A B C \cong \triangle D E F$

Statement	Reason
	Given
	All right angles are congruent
	Given
	AAS

2. Theorem: The median from the right angle in a right triangle is one-half the length of the hypotenuse.
Given: $\triangle A B C$ with right angle $\angle A C B$ and median $\overline{C D}$.
Prove: $C D=1 / 2 A B$

Statement	Reason	
Draw $\overleftrightarrow{D E} \\| \overline{A C}$		
$\Delta A B C$ with right angle $\angle A C B$ and median $\overline{C D}$		
$B D=A D$	Definition of median and def. of \cong segments.	
$\frac{A D}{D B}=\frac{C E}{E B}$	A line \\| to one side and intersecting two sides of a triangle dives the sides into proportional segments.	
$\overline{D E} \cong \overline{D E}$		
	If two legs of two right $\Delta \mathrm{s}$ are \cong, the $\Delta \mathrm{s}$ are \cong.	
$B D=C D$		
$B D+D A=B A$		
$B D+B D=B A$	Substitution postulate	
$2 B D=B A$		
$C D=1 / 2 B A$		

3. In the figure at right, $\overline{B C} \| \overline{D E}$.

What is the degree measure of x
so that $\angle A B C=5 x$ and $\angle C D E=2 x+9$?

4. Find the altitude of an equilateral triangle with sides of length 4.
5. Draw an isosceles right triangle with hypotenuse of length 8 inches.

Find the perimeter and area of this triangle.
6. Consider the diagram at right and assume that $\overline{A B} \perp \overline{A C}$ and that $\overline{A D} \perp \overline{B C}$.
a. Prove that $\triangle C A D \sim \triangle A B D$
b. If $A C=15$ and $A D=\frac{120}{17}$, find the area of $\triangle A B D$. Hint:
 If you find $C D$ then you'll have the ratios $\frac{\text { hypotenuse }}{\text { short leg }}, \frac{\text { hypotenuse }}{\text { long leg }}, \frac{\text { long leg }}{\text { short leg }}$ for all three triangles
7. Consider quadrilateral $A B C D$ shown at right and suppose we know that $\angle A D B \cong \angle C B D$. What type of quadrilateral can we deduce that $A B C D$ is?

8. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right.
a. What is the measure of central angle $\angle C O D$?
b. If $C D=8$, what is the area of the circle?

Math 5 - Trigonometry - Geometry Test Solutions - Fall '12

1. (HA Theorem) Given right triangles $\triangle A B C$, $\triangle D E F$ with $\angle A$ and $\angle D$ right angles; $\overline{B C} \cong \overline{E F}$ and $\angle C \cong \angle F$, fill in the missing statements to complete the proof that $\triangle A B C \cong \triangle D E F$

Statement
right triangles $\triangle A B C, \triangle D E F$ right angles
$\angle A \cong \angle D$
$\angle C \cong \angle F$ and $\overline{B C} \cong \overline{E F}$
$\triangle A B C \cong \triangle D E F$

Reason
Given
All right angles are congruent
Given
ABS

Statement	Reason	
Draw $\overleftrightarrow{D E} \\| \overline{A C}$	Parallel postulate.	
$\Delta A B C$ with right angle $\angle A C B$ and median $\overline{C D}$	Given	
$B D=A D$	Definition of median and def. of \cong segments.	
$\frac{A D}{D B}=\frac{C E}{E B}$	A line \\|l to one side and intersecting two sides of a triangle dives the sides into proportional segments.	
$\overline{D E} \cong \overline{D E}$	Reflexive Postulate	
$\Delta \boldsymbol{B} \boldsymbol{D E} \cong \Delta \boldsymbol{C D E}$	If two legs of two right $\Delta \mathrm{s}$ are \cong, the $\Delta \mathrm{s}$ are \cong.	
$B D=C D$	CPCTC	
$B D+D A=B A$	Partition Postulate	
$B D+B D=B A$	Substitution Postulate	
$2 B D=B A$	Distributive Postulate	
$\mathbf{2 C D = B A}$	Substitution postulate	
$C D=1 / 2 B A$	Division Postulate	

3. In the figure at right, $\overline{B C} \| \overline{D E}$.

What is the degree measure of x
so that $\angle A B C=5 x$ and $\angle C D E=2 x+9$?

SOLN: $\angle C B D=180-5 x$ (A-B-C is straight) and $\angle B C D=2 x+9$ (when $C D$ cuts $\overline{B C} \| \overline{D E}$, alternate interior angles are congruent). Since the sum of the interior angles of a triangle is 180 , $180-5 x+90+2 x+9=180 \Leftrightarrow 3 x=99$ so $x=33$. Alternatively, note that when $\overline{B D}$ cuts $\overline{B C} \| \overline{D E}$, corresponding angles are congruent, so $\angle A B C=\angle B D E$. Thus $5 x=2 x+99$ and so $x=33$.
4. Find the altitude of an equilateral triangle with sides of length 4.

SOLN:
Draw $\overline{B D} \perp \overline{A C}$ Then, since base angles $\angle A \cong \angle C$ and $\overline{B D} \cong \overline{B D}$,
$\triangle A B D \cong \triangle C B D$ by AAS. Therefore $\overline{A D} \cong \overline{C D}$ (СРСТС) so that $A D=2$. Now using Pythagoras' theorem, we have the altitude $B D$ satisfies $2^{2}+B D^{2}=4^{2}$ so that $B D^{2}=12$ and $B D=2 \sqrt{3}$. As a shortcut, one could observe that the altitude is the longer leg of a 30-60-
 90 triangle and so its length is $\sqrt{2}$ times the shorter leg.
5. Draw an isosceles right triangle with hypotenuse of length 8 inches.

Find the perimeter and area of this triangle.

E
SOLN: 8 inches extends almost across the entire width of the page. Use Pythagoras' theorem to find the legs:

Let $x=$ the length of a leg. Then $x^{2}+x^{2}=8^{2}$ so $2 x^{2}=64$ or $x=\sqrt{32}=4 \sqrt{2}$
Thus the perimeter is $8+2 x=8+8 \sqrt{2}$ inches.
The area is half the area of a square of side $4 \sqrt{2}$, that is

$$
\text { area }=\frac{1}{2}(4 \sqrt{2})^{2}=16 \text { square inches. }
$$

6. Consider the diagram at right and where $\overline{A B} \perp \overline{A C}$ and $\overline{A D} \perp \overline{B C}$.
a. Prove that $\triangle C A D \sim \triangle A B D$

Statement	Reason
$\angle A D C \cong \angle A D B \cong \angle C A B$	All rt $\angle S$ are \cong
$m \angle A D C=m \angle A D B=m \angle C A B$	$\cong \angle s$ have equal measure
$\angle B+\angle B A D+90^{\circ}=180^{\circ}$	The sum of interior angles
$\angle B+\angle C+90^{\circ}=180^{\circ}$	of a triangle is 180°.
$\angle C A D+\angle C+90^{\circ}=180^{\circ}$	
$\angle B+\angle B A D=90^{\circ}$	
$\angle B+\angle C=90^{\circ}$	Subtraction Postulate
$\angle C A D+\angle C=90^{\circ}$	
$\angle B+\angle B A D=\angle B+\angle C$	Transitive Postulate
$\angle B+\angle C=\angle C A D+\angle C$	
$\angle B A D=\angle C$	Subtraction Postulate
$\angle B=\angle C A D$	
$\triangle C A D \sim \triangle A B D$	AA

b. If $A C=15$ and $A D=\frac{120}{17}$, find the area of $\triangle A B D$. Hint: If you find $C D$ then you'll have the ratios $\frac{\text { hypotenuse }}{\text { short leg }}, \frac{\text { hypotenuse }}{\text { long leg }}, \frac{\text { long leg }}{\text { short leg }}$ for all three triangles
SOLN: The area of $\triangle A B D=\frac{1}{2} B D \cdot A D$, so we'd like to find $B D$, but we'll follow the hint and first find $C D$. Using the Pythagorean theorem, we have

$$
\begin{aligned}
C D^{2}=15^{2}- & \left(\frac{120}{17}\right)^{2}=\left(15-\frac{120}{17}\right)\left(15+\frac{120}{17}\right)=\frac{255-120}{17} \cdot \frac{155+120}{17}=\frac{135 \cdot 275}{17^{2}} \\
= & \frac{4125}{289}
\end{aligned}
$$

Now, $C D=\frac{5 \sqrt{33}}{17}$. Let $x=B D$. Now equating $\frac{\text { long leg }}{\text { short leg }}$ in $\triangle A B D \sim \triangle C A D \frac{120}{17 x}=\frac{5(17) \sqrt{33}}{17(120)}$, or simplifying, $\frac{120}{17 x}=\frac{\sqrt{33}}{24}$ and so $x=\frac{(120)(24)}{17 \sqrt{33}}=\frac{960 \sqrt{33}}{187}$.
Finally, the area $\triangle A B D=\frac{1}{2} B D \cdot A D=\frac{1}{2} \cdot \frac{960 \sqrt{33}}{187} \cdot \frac{120}{17}=\frac{57600 \sqrt{33}}{1309}$. Wow, that was numerically challenging!
7. Consider quadrilateral $A B C D$ shown at right and suppose we know that $\angle A D B \cong \angle C B D$.
What type of quadrilateral can we deduce that $A B C D$ is?

SOLN: When transversal $\overline{B D}$ cut lines $\overline{A D}$ and $\overline{B C}$, it makes alternate interior angles equal, so we can deduce that $\overline{A D} \| \overline{B C}$ so that $A B C D$ is either a trapezoid (if $\overline{A B} \nVdash \overline{D C}$) or a parallelogram (if $\overline{A B} \| \overline{D C}$).
8. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right.
a. What is the measure of central angle $\angle C O D$?

SOLN: $\frac{360^{\circ}}{6}=60^{\circ}$
b. If $C D=8$, what is the area of the circle?

SOLN: $\triangle C O D$ is equilateral, so its altitude, $4 \sqrt{3}$, is the radius of the circle, so the area of the circle is $\pi(4 \sqrt{3})^{2}=48 \pi$.

I was interested in how students' homework scores on ILRN correlated with their test scores, so I produced this scatterplot (the outliers are removed) showing a significant positive correlation.

```
ILRN Test Scores v. ILRN Scores
```


