Math 5 – Trigonometry – Chapter 5 Fair Game.

- 1. If the arclength $t = \frac{29\pi}{6}$ is traced counterclockwise along the unit circle from (1,0) then
 - a. What is the reference number for *t*?
 - b. What are the coordinates of the terminal point P(x,y) ?
 - c. Draw the unit circle and plot the terminal point P(x,y).
- 2. For arclength $t = \frac{31\pi}{6}$ extending counterclockwise along the unit circle from (1,0)
 - a. Find the reference number for *t*.
 - b. Find the coordinates of the terminal point P(x,y).
 - c. Illustrate this point's position on a plot of the unit circle.
- 3. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
 - a. Verify that the point lies on the unit circle.
 - b. Use the diagram at right to approximate to the nearest tenth a value of *t* so that

$$\cos(t) = \frac{5}{13} \approx 0.38$$

- c. Approximate to the nearest tenth the interval in the first quadrant where $\frac{5}{12} \le \tan(t) \le \frac{12}{5}$
- 4. Consider the point $\left(\frac{8}{17}, \frac{15}{17}\right)$

- a. Verify that the point lies on the unit circle.
- b. Use the diagram to approximate to the nearest tenth a value of t so that $\cos(t) = \frac{8}{17} \approx 0.47$
- c. Approximate to the nearest tenth a value of t so that $tan(t) = \frac{8}{15}$
- 5. Recall that a function is even if f(-x) = f(x) and odd if f(-x) = -f(x). Of the six trigonometric functions: sin(x), cos(x), tan(x), sec(x), csc(x) and cot(x)
 - a. Which functions are even?
 - b. Which functions are odd?

- 6. Suppose that $\cos(t) = \frac{\sqrt{91}}{10}$ and point and $\sin(t) < 0$. Find $\sin(t), \tan(t), \sec(t), \csc(t)$ and $\cot(t)$.
- 7. Write sec(t) in terms of tan(t), assuming the terminal point for t is in quadrant III.
- 8. Find the amplitude, period and phase shift of $y = 5 + 5\sin\left(20\pi\left(x \frac{1}{50}\right)\right)$, construct a table of values and graph one period of the function, clearly showing the position of key points.
- 9. Suppose that $\cos(t) = \frac{99}{101}$ and point and $\sin(t) < 0$. Find $\sin(t)$, $\tan(t)$, $\sec(t)$, $\csc(t)$ and $\cot(t)$.
- 10. Write sec(t) in terms of tan(t), assuming the terminal point for t is in quadrant III.
- 11. Find the amplitude, period and phase shift of $y = 5 + 4\sin\left(2\pi\left(x + \frac{1}{4}\right)\right)$, construct a table of values and graph one period of the function, clearly showing the position of key points.
- 12. Find an equation for the sinusoid whose graph is shown:

- 13. Consider the function $f(x) = \tan\left(\frac{\pi}{2}x\right)$.
 - a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
 - b. Find the *x*-coordinates where y = 0 and where $y = \pm 1$.
 - c. Carefully construct a graph of the function showing how it passes through the points where y = -1, y = 0, y = 1 and how it approaches the vertical asymptotes.
- 14. Suppose $\cos t = 9/28$ and *t* is in the first quadrant. Find the following:
 - a. $\cos(t+\pi)$
 - b. $\cos\left(t + \frac{\pi}{2}\right)$ c. $\cos\left(\frac{\pi}{2} - t\right)$
- 15. Consider the function $f(x) = \tan\left(\frac{\pi}{2}\left(x \frac{1}{2}\right)\right)$.
 - a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
 - b. Find the *x*-coordinates where y = 0 and where $y = \pm 1$.
 - c. Carefully construct a graph of the function showing how it passes through the points where y = -1, y = 0, y = 1 and how it approaches the vertical asymptotes.
- 16. Suppose sin t = 16/65 and t is in the first quadrant. Find the following:
 - a. $\sin(t+\pi)$ b. $\sin(t+\frac{\pi}{2})$
 - c. $\sin\left(\frac{\pi}{2}-t\right)$
- 17. Complete the table of values for $f(t) = \cos(\pi t) + 2\sin(\pi t)$, plot the points and sketch a graph.

t	0	1/6	1/4	1/3	1/2	2/3	3/4	5/6	1
$\cos(\pi t)$									
$\overline{2\sin(\pi t)}$									
f(t)									

18. The Millennium Wheel rotates once every 30 minutes. Its highest point is about 135 meters above the ground and the lowest point is about 5 meters above the ground. Write a function that gives the height of a rider *t* minutes after boarding the Millennium Wheel.

19.

Math 5 – Trigonometry – Chapter 5 Fair Game Solutions

- 1. For arclength $t = \frac{29\pi}{6}$ extending counterclockwise along the unit circle from (1,0)
 - a. Find the reference number for *t*. ANS: $t = \frac{(12+12+5)\pi}{6} = 2\pi + 2\pi + \frac{5\pi}{6}$ so the reference number is $\frac{5\pi}{6}$.
 - b. Find the coordinates of the terminal point *P*(*x*,*y*).ANS: Since this point is in the second

quadrant, x < 0 and y > 0 so

$$x = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \ y = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}.$$

c. Illustrate this point's position on a plot of the unit circle.

ANS: The point
$$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$
.

-0.5

-0.5

 $\frac{\sqrt{3}}{2}$

0.5

2. For arclength $t = \frac{31\pi}{6}$ extending counterclockwise along the unit circle from (1,0) a. Find the reference number for *t*.

- ANS: $t = \frac{31\pi}{6} = \frac{(12+12+6+1)\pi}{6} = 2\pi + 2\pi + \pi + \frac{\pi}{6}$ so the reference number is $\frac{\pi}{6}$. b. Find the coordinates of the terminal point P(x,y). ANS: Since this point is in the third quadrant, both x and y are negative and so $x = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$ and $y = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$.
 - c. Illustrate this point's position on a plot of the unit circle.

ANS: The point
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

- 3. Consider the point $\left(\frac{8}{17}, \frac{15}{17}\right)$
 - a. Verify that the point lies on the unit circle.

ANS:
$$\left(\frac{8}{17}\right)^2 + \left(\frac{15}{17}\right)^2 = \frac{64}{289} + \frac{225}{289} = \frac{289}{289} = 1$$

b. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos(t) = \frac{8}{17} \approx 0.47$

ANS: A vertical segment is drawn from 0.47 on the *x*-axis intersects the circle at t near 1.1

c. Approximate to the nearest tenth a value of t so that $\tan(t) = \frac{8}{15}$

- ANS: Since $\cot(t) = \cos(t)/\sin(t) = 8/15$ and $\tan(\pi/2 t) = \cot(t)$. So choose t = 1.6 1.1 = 0.5
- 4. Suppose that $\cos(t) = \frac{99}{101}$ and point and $\sin(t) < 0$. Find $\sin(t)$, $\tan(t)$, $\sec(t)$, $\csc(t)$ and $\cot(t)$.

ANS:
$$\sin(t) = -\sqrt{1 - \cos^2 t} = -\sqrt{1 - \left(\frac{99}{101}\right)^2} = -\sqrt{1 - \frac{9801}{10201}} = -\sqrt{\frac{10201 - 9801}{10201}} = -\sqrt{\frac{400}{10201}} = -\frac{20}{101}$$

Thus $\tan(t) = -\frac{20}{99}$; $\sec(t) = \frac{101}{99}$; $\csc(t) = -\frac{101}{20}$; $\cot(t) = -\frac{99}{20}$

5. Write $\sec(t)$ in terms of $\tan(t)$, assuming the terminal point for *t* is in quadrant III. ANS: Starting with $\cos^2 t + \sin^2 t = 1$, divide through by $\cos^2 t$ to obtain $1 + \tan^2 t = \sec^2 t$. Since $\sec(t)$ is negative in quadrant III, $\sec t = -\sqrt{1 + \tan^2 t}$

6. Find the amplitude, period and phase shift of $y = 5 + 4 \sin \left(2\pi \left(x + \frac{1}{x} \right) \right)$ construct a

of $y = 5 + 4\sin\left(2\pi\left(x + \frac{1}{4}\right)\right)$, construct a

table of values and graph one period of the function, clearly showing the position of key points.

ANS: The amplitude is 4, the period is 1 and the phase angle is -1/4.

Graph is shown at right.

7. Find an equation for the sinusoid whose graph is shown:

ANS: The lowest point is at y=7 and the highest point is at 23 so the line of equilibrium is at the average of these: y = (7+23)/2 = 15. and the amplitude is (23 - 7)/2 = 8.

The two peaks shown in the graph here are where x = 0.5 and x = 2.5, so the period is 2.5 - 0.5 = 2. Thus an equation for the sinusoid is $y = 15 + 8\sin(\pi x)$.

- 30 28 26 24 22 20 18 16 14 1/2 10 8 6 4 2 0 0.5 1.5
- 8. Consider the function $f(x) = \tan\left(\frac{\pi}{2}\left(x \frac{1}{2}\right)\right)$.
 - a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.

ANS: We want the input to the tangent to be $\pm \frac{\pi}{2}$, that is

$$\frac{\pi}{2}\left(x-\frac{1}{2}\right) = \pm\frac{\pi}{2} \Leftrightarrow x-\frac{1}{2} = \pm 1 \Leftrightarrow \boxed{x=\frac{1}{2}\pm 1 = -\frac{1}{2} \text{ or } \frac{3}{2}}$$

b. Find *x*-coords where y = 0 and $y = \pm 1$. ANS: We want to find where the input to the tangent function is equal to $\pm \frac{\pi}{4}$, that is

$$\frac{\pi}{2}\left(x-\frac{1}{2}\right) = \pm\frac{\pi}{4} \Leftrightarrow x-\frac{1}{2} = \pm\frac{1}{2}.$$
$$\Leftrightarrow \boxed{x=0 \text{ or } x=1}$$

c. Graph of the function showing how it passes through the points where y = -1, y = 0, y = 1 and how it approaches the vertical asymptotes.

9. Suppose sin t = 16/65 and t is in the first quadrant. Find the following:

a.
$$\sin(t+\pi) = -\frac{16}{65}$$

b. $\sin\left(t+\frac{\pi}{2}\right) = -\cos(t) = -\sqrt{1-\left(\frac{16}{65}\right)^2} = -\sqrt{1-\frac{256}{4225}} = -\sqrt{\frac{3969}{4225}} = \frac{63}{65}$
c. $\sin\left(\frac{\pi}{2}-t\right) = \frac{63}{65}$

10. Complete the table of values for $f(t) = \cos(\pi t) + 2\sin(\pi t)$, plot the points and sketch a graph.

11. The Millennium Wheel rotates once every 30 minutes. Its highest point is about 135 meters above the ground and the lowest point is about 5 meters above the ground. Write a function that gives the height of a rider *t* minutes after boarding the Millennium Wheel. ANS: $h(t) = 70 - 65 \cos(\pi t / 15)$