Math 5 - Trigonometry - fall '12 - Chapter 2 Test Review .

1. Consider the line passing the points $(20,100)$ and $(7,9)$ in the $x-y$ Cartesian coordinate plane.
a. Find an equation for the line in variables x and y.
b. Find an equation for the line parallel to this line and passing through $(0,8)$.
c. Find an equation for the line perpendicular to this line and passing through $(0,0)$.
d. Find an equation for the parabola that goes through the points $(0,0),(20,100)$ and $(7,9)$
2. Compute and simplify the average rate of change of $f(x)=2 x^{2}+8 x$ over the given interval. Remember that the average rate of change on the interval $[a, b]$ is the slope of the secant line connecting $[a, f(a)]$ with $[b, f(b)]$.
a. $[0,3]$
b. $[a, a+h]$
3. Compute and simplify the average rate of change of $f(x)=\frac{x}{x^{2}+1}$ over the given interval.
a. $[0,2]$
b. $[1,1+h]$
4. Consider the quadratic $f(x)=-x^{2}+2 x+2$
a. Express the quadratic function in vertex form:
b. Express the zeros (x-intercepts) of the parabola in simplest radical form.
c. Sketch its graph, showing the coordinates of the vertex and all intercepts.
5. Suppose $f(x)=\sqrt{2-x}$ and $g(x)=\frac{1}{x^{2}-1}$.
a. Find the domain of $(g \circ f)(x)$
b. Find the domain of $(f \circ g)(x)$
6. Find the maximum value of the given function and state its range in interval notation.
a. $\quad f(x)=-2(x-3)^{2}+8$
b. $f(x)=-2 x^{2}+8 x+1$
7. Given the graph of $y=f(x)$ shown at right and the given transformation, tabulate the transformed coordinate values of points at A, B, C, D, E, F and G, and plot the given transformation
a. $y=2 f(x)$
b. $y=1+f(x-2)$
c. $y=10-f(x)$

8. Consider the quadratic $f(x)=-3 x^{2}+5 x+7$
a. Express the quadratic function in vertex form.
b. Sketch its graph.
c. What sequence of transformations would transform this function to $y=x^{2}$?
9. Given the graph of $y=f(x)$ shown at right, graph
a. $y=2 f(x)$
b. $y=f\left(\frac{x}{2}\right)$
c. $y=2 f(1-x)$
d. $y=2-f(x+1)$

10. The total surface area of a cylinder is π square units.
a. Find a function that models the cylinder's height as a function of its radius.
b. Find a function that models the cylinder's radius as a function of its height.
11. Find a formula for the inverse function of $f(x)=\sqrt[3]{x+8}$ and plot the function and its inverse together in the same coordinate plane, showing the symmetry of these function across the line $y=x$.
12. Consider $f(x)=x^{2}$
a. Write a formula for the function that results from shifting 2 units left, reflecting in the y-axis and then stretching horizontally by a factor 3 , in that order.
b. What sequence of transformations on $f(x)$ would produce $y=2-\left(\frac{x}{2}-1\right)^{2}$?
13. Suppose $f(x)=\frac{2}{x^{2}-3 x+2}$ and $g(x)=\frac{1}{x-2}$.
a. Find the domain of $(f \circ g)(x)$
b. Find the domain of $(g \circ f)(x)$
14. Find a formula for the inverse function of $f(x)=(x+1)^{3}-3$ and sketch a graph for $f^{-1}(x)$ and $f(x)$ together showing the symmetry through the line $y=x$.
15. Find a formula for the inverse function of $f(x)=3 x-2$ and sketch a graph for $f^{-1}(x)$ and $f(x)$ together showing the symmetry through the line $y=x$.
