Math 5 - Trigonometry - Chapter 4 Test - Fall '08
Name
Show work for credit. Write all responses on separate paper. Do not use a calculator.

1. Consider an arclength of $t=\frac{23 \pi}{4}$ travelled counter-clockwise around the circumference of the unit circle, starting at $(1,0)$.
a. What quadrant is the terminal point in?
b. What is the value of the reference number $\bar{t}$ ?
c. Evaluate $\sin \left(\frac{23 \pi}{4}\right), \cos \left(\frac{23 \pi}{4}\right)$ and $\tan \left(\frac{23 \pi}{4}\right)$
2. Recall that a function is even if $f(-x)=f(x)$ and a function is odd if $f(-x)=-f(x)$. Of the 6 trigonometric functions: $\sin (x), \cos (x), \tan (x), \csc (x), \sec (x)$ and $\cot (x)$,
a. Which functions are even?
b. Which functions are odd?
3. If $\cos (t)=\frac{12}{37}$ and $t$ leads to a terminal point in the fourth quadrant,
a. Find $\sin (t)$
b. Find $\tan (t)$
4. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
a. Verify that the point lies on the unit circle.
b. Use the diagram at right to approximate to the nearest tenth the smallest positive value of $t$ so that

$$
\cos (t)=\frac{5}{13} \approx 0.38
$$

c. Approximate to the nearest tenth the $t$-interval for which $0.38 \approx \frac{5}{13}<\cos (t)<\frac{12}{13} \approx 0.92$

5. Find the values of the other five trigonometric functions of $t$ if $\tan (t)=-3$ and the terminal point of $t$ is in quadrant II. Simplify all radical expressions and rationalize denominators. Hint: recall the Pythagorean identy: $\cos ^{2} t+\sin ^{2} t=1 \Leftrightarrow 1+\tan ^{2} t=\sec ^{2} t$
6. Find the period, amplitude and phase angle of $y(t)=6 \cos (3 \pi t)$ and sketch a graph showing at least 5 points on at least one complete oscillation of the sinuosoid.
7. Find the period, amplitude and phase angle of $y(t)=6 \sin [8(t-1)]$ and sketch a graph showing at least 5 points on the sinuosoid.
8. Find an equation for the sinusoid whose graph is shown:

9. Consider the function $f(x)=\tan \left(\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right)$.
a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
b. Find the $x$-coordinates where $y=0$ and where $y= \pm 1$.
c. Carefully construct a graph of the function showing how it passes through the points where $y=-1, y=0, y=1$ and how it approaches the vertical asymptotes.
10. Suppose $\sin t=16 / 65$ and $t$ is in the first quadrant. Plot the following points on the unit circle and find the values of the coordinates as rational numbers:
a. $\quad(x, y)=(\cos (t+\pi), \sin (t+\pi))$
b. $\quad(x, y)=\left(\cos \left(t+\frac{\pi}{2}\right), \sin \left(t+\frac{\pi}{2}\right)\right)$
c. $\quad(x, y)=\left(\cos \left(\frac{\pi}{2}-t\right), \sin \left(\frac{\pi}{2}-t\right)\right)$
11. Complete the table of values for $f(t)=\cos (\pi t)+2 \sin (\pi t)$, plot the points and sketch a graph.

| $t$ | 0 | $1 / 6$ | $1 / 4$ | $1 / 3$ | $1 / 2$ | $2 / 3$ | $3 / 4$ | $5 / 6$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cos (\pi t)$ |  |  |  |  |  |  |  |  |  |
| $2 \sin (\pi t)$ |  |  |  |  |  |  |  |  |  |
| $f(t)$ |  |  |  |  |  |  |  |  |  |

## Math 5 - Trigonometry - Chapter 4 Test Solutions - Fall '08

1. Consider an arclength of $t=\frac{23 \pi}{4}$ travelled counter-clockwise around the circumference of the unit circle, starting at $(1,0)$.
a. What quadrant is the terminal point in?

SOLN: $t=\frac{23 \pi}{4}=4 \pi+\frac{7 \pi}{4}$ is in QIV.
b. What is the value of the reference number $\bar{t}$ ?

SOLN: $\bar{t}=\frac{\pi}{4}$
c. Evaluate $\sin \left(\frac{23 \pi}{4}\right), \cos \left(\frac{23 \pi}{4}\right)$ and $\tan \left(\frac{23 \pi}{4}\right)$

SOLN: $\sin \left(\frac{23 \pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}, \cos \left(\frac{23 \pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$, and $\tan \left(\frac{23 \pi}{4}\right)=-1$
2. Recall that a function is even if $f(-x)=f(x)$ and a function is odd if $f(-x)=-f(x)$. Of the 6 trigonometric functions: $\sin (\mathrm{x}), \cos (\mathrm{x}), \tan (x), \csc (x), \sec (x)$ and $\cot (x)$,
a. Which functions are even?

SOLN: $\cos (x)$ and $\sec (x)$ are even functions.
b. Which functions are odd?

SOLN: $\sin (x), \tan (x), \csc (x)$, and $\cot (x)$ are odd.
3. If $\cos (t)=\frac{12}{37}$ and $t$ leads to a terminal point in the fourth quadrant,
a. Find $\sin (t)$

SOLN: $\sin (t)=-\sqrt{1-\cos ^{2} t}=-\sqrt{1-\left(\frac{12}{37}\right)^{2}}=-\sqrt{\frac{1369-144}{1369}}=\sqrt{\frac{1225}{1369}}=\frac{-35}{37}$
b. Find $\tan (t) \quad$ SOLN: $\tan (t)=\frac{35 / 37}{-12 / 37}=\frac{-35}{12}$
4. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
a. Verify that the point lies on the unit circle.

SOLN: $\left(\frac{5}{13}\right)^{2}+\left(\frac{12}{13}\right)^{2}=\frac{25}{169}+\frac{144}{169}=\frac{169}{169}=1$
b. Use the diagram at right to approximate to the nearest tenth the smallest positive value of $t$ so that $\cos (t)=\frac{5}{13} \approx 0.38$ SOLN: If $\cos (t) \approx 0.38$ in QI then $t \approx 1.2$ (diagram)

c. Approximate to the nearest tenth the $t$-interval for which $0.38 \approx \frac{5}{13}<\cos (t)<\frac{12}{13} \approx 0.92$

SOLN: As shown in the diagram, if $\cos (t)$ is approximately between 0.38 and 0.92 , then $t$ is approx. between 0.4 and 1.2 , though, since $\cos (t)$ is decreasing in QI, the larger $t$ goes with the smaller $\cos (t)$ and vice versa.
5. Find the values of the other five trigonometric functions of $t$ if $\tan (t)=-3$ and the terminal point of $t$ is in quadrant II. Simplify all radical expressions and rationalize denominators.
Hint: recall the Pythagorean identy: $\cos ^{2} t+\sin ^{2} t=1 \Leftrightarrow 1+\tan ^{2} t=\sec ^{2} t$
SOLN: $\cot (t)=-1 / 3, \quad 1+\tan ^{2} t=1+(-3)^{2}=\sec ^{2} t \Leftrightarrow \sec ^{2} t=10 \Rightarrow \sec t=-\sqrt{10}$, since $\sec (t)$ is negative in QII.
Thus, $\cos (t)=\frac{1}{-\sqrt{10}}=\frac{-\sqrt{10}}{10}, \sin (t)=\sqrt{1-\cos ^{2}(t)}=\sqrt{\frac{9}{10}}=\frac{3 \sqrt{10}}{10}$ and $\csc (t)=\frac{1}{\sin (t)}=\frac{\sqrt{10}}{3}$.
That's all six.
6. Find the period, amplitude and phase angle of $y(t)=6 \cos (3 \pi t)$ and sketch a graph showing at least 5 points on at least one complete oscillation of the sinusoid.
SOLN: The period is $\frac{2 \pi}{3 \pi}=\frac{2}{3}$, the amplitude is 6 and the phase angle is zero or $-\frac{1}{6}$ depending on whether you're thinking of the cosine or the sine as your basic waveform.

7. Find the period, amplitude and phase angle of $y(t)=6 \sin [8(t-1)]$ and sketch a graph showing at least 5 points on the sinusoid. SOLN: period $=\frac{2 \pi}{8}=\frac{\pi}{4}$, amp $=6$ and phase shift $=1-\frac{\pi}{4}$.

8. Find an equation for the sinusoid whose graph is shown:

ANS: The lowest point is at $y=7$ and the highest point is at 23 so the line of equilibrium is at the average of these: $y=(7+23) / 2=15$. and the amplitude is $(23-7) / 2=8$.

The two peaks shown in the graph here are where $x=0.5$ and $x=2.5$, so the period is $2.5-$ $0.5=2$.
Thus an equation for the sinusoid is
$y=15+8 \sin (\pi x)$.

9. Consider the function $f(x)=\tan \left(\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right)$.
a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.

ANS: We want the input to the tangent to be $\pm \frac{\pi}{2}$, that is

$$
\frac{\pi}{2}\left(x-\frac{1}{2}\right)= \pm \frac{\pi}{2} \Leftrightarrow x-\frac{1}{2}= \pm 1 \Leftrightarrow x=\frac{1}{2} \pm 1=-\frac{1}{2} \text { or } \frac{3}{2}
$$

b. Find $x$-coords where $y=0$ and $y= \pm 1$. ANS: We want to find where the input to the tangent function is equal to $\pm \frac{\pi}{4}$, that

$$
\text { is } \begin{aligned}
\frac{\pi}{2}\left(x-\frac{1}{2}\right) & = \pm \frac{\pi}{4} \Leftrightarrow x-\frac{1}{2}= \pm \frac{1}{2} . \\
& \Leftrightarrow x=0 \text { or } x=1
\end{aligned}
$$

c. Graph of the function showing how it passes through the points where $y=-1, y=$ $0, y=1$ and how it approaches the vertical asymptotes.

10. Suppose $\sin t=16 / 65$ and $t$ is in the first quadrant. Find the following:
a. At $t+\pi,(x, y)=\left(-\frac{63}{65},-\frac{16}{65}\right)$
b. At $t+\frac{\pi}{2},(x, y)=\left(-\frac{16}{65}, \frac{63}{65}\right)$
c. At $\frac{\pi}{2}-t,(x, y)=\left(\frac{16}{65}, \frac{63}{65}\right)$

11. Complete the table of values for $f(t)=\cos (\pi t)+2 \sin (\pi t)$, plot the points and sketch a graph.

| $t$ | 0 | $1 / 6$ | $1 / 4$ | $1 / 3$ | $1 / 2$ | $2 / 3$ | $3 / 4$ | $5 / 6$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cos (\pi t)$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 | $-\frac{1}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1 |
| $2 \sin (\pi t)$ | 0 | 1 | $\sqrt{2}$ | $\sqrt{3}$ | 2 | $\sqrt{3}$ | $\sqrt{2}$ | 1 | 0 |
| $f(t)$ | 1 | $1+\frac{\sqrt{3}}{2}$ | $\frac{3 \sqrt{2}}{2}$ | $\frac{1}{2}+\sqrt{3}$ | 2 | $-\frac{1}{2}+\sqrt{3}$ | $\frac{\sqrt{2}}{2}$ | $1-\frac{\sqrt{3}}{2}$ | -1 |



