1. In the figure at right, $\overleftrightarrow{B C} \| \overleftrightarrow{D E}$.

What is the degree measure of x so that $\angle A B C=5 x$ and $\angle C D E=2 x+9$?

2. Find the altitude of an equilateral triangle with sides of length 10 .
3. Draw an isosceles right triangle with hypotenuse of length 2 inches. Find the perimeter and area of this triangle.
4. Consider the diagram at right and assume that $\overline{A B} \perp \overline{A C}$ and that $\overline{A D} \perp \overline{B C}$.
a. Prove that $\triangle C A D \sim \triangle A B D$
b. If $A C=15$ and $A D=\frac{120}{17}$, find the area of $\triangle A B D$.

Hint: If you find $C D$ then you'll have the ratios

$$
\frac{\text { hypotenuse }}{\text { short leg }}, \frac{\text { hypotenuse }}{\text { long leg }}, \frac{\text { long leg }}{\text { short leg }} \text { for all three triangles }
$$

5. Deduce the truth of the theorem stating that the sum of the interior angles of any triangle is 180 degrees. You might start by drawing a line through one of the vertices that is parallel to side opposite that vertex.
6. Consider quadrilateral $A B C D$ shown at right and suppose we know that $\angle A D B \cong \angle C B D$.
What type of quadrilateral can we deduce that $A B C D$ is?

7. Refer to the diagram to the right, where $\overleftrightarrow{A B} \| \overleftrightarrow{D E}$.
a. Prove that $\triangle C A B \sim \triangle C D E$
b. Prove that $\frac{a}{b}=\frac{d}{e}$.
c. Use this result to prove that the base angles of an isosceles trapezoid are congruent.

8. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right.
a. What is the measure of central angle $\angle C O D$?
b. If $C D=8$, what is the area of the circle?

Math 5 - Trigonometry - Chapter 1 Test Solutions - Spring '09

1. In the figure at right, $\overleftrightarrow{B C} \| \overleftrightarrow{D E}$.

What is the degree measure of x so that $\angle A B C=5 x$ and $\angle C D E=2 x+9$?

Solution: Since $\angle A B C$ and $\angle A D E$ are corresponding angles for the transversal AD cutting parallels $\overleftrightarrow{B C} \| \overleftrightarrow{D E}$ so that $\angle A B C=\angle A D E \Leftrightarrow 5 x=90+2 x+9 \Leftrightarrow 3 x=99 \Leftrightarrow x=33^{\circ}$
2. Find the altitude of an equilateral triangle with sides of length 10 .

SOLN: Draw the perpendicular bisector of the base to form a 30-60-90 triangle. Then the height (altitude) of the triangle is the square root of 3 time the short leg: $h=5 \sqrt{3}$
3. Draw an isosceles right triangle with hypotenuse of length 2 inches. Find the perimeter and area of this triangle.

SOLN: Let the length of a leg be x so that $x^{2}+x^{2}=2^{2} \Leftrightarrow x^{2}=2 \Rightarrow x=\sqrt{2}$ so the perimeter $=2 \sqrt{2}+2=2(1+\sqrt{2})$ and the area $=\frac{1}{2}(\sqrt{2} \sqrt{2})=1$
4. Consider the diagram at right and assume that $\overline{A B} \perp \overline{A C}$ and that $\overline{A D} \perp \overline{B C}$.
a. Prove that $\triangle C A D \sim \triangle A B D$

SOLN: Since the sum of the interior angles of a triangle is 180 degrees and there are right angles at A and D we have that $\angle B+\angle C=90$,
$\angle B+\angle B A D=90$ and $\angle C A D+\angle C=90$ whence
 $\angle C=\angle B A D$ and $\angle B=\angle C A D$ so the triangles are
 equiangular which is another word for similar.
5. If $A C=15$ and $A D=\frac{120}{17}$, find the area of $\triangle A B D$. Hint: If you find $C D$ then you'll have the ratios $\frac{\text { hypotenuse }}{\text { short leg }}, \frac{\text { hypotenuse }}{\text { long leg }}, \frac{\text { long leg }}{\text { short leg }}$ for all three triangles
SOLN: $\frac{\text { short }}{\text { hypotenuse }}=\frac{120}{15 \cdot 17}=\frac{120}{255}=\frac{8}{17}=\frac{B D}{A B}=\frac{A B}{B D+C D}=\frac{A B}{\frac{8 A B}{17}+C D}$ whence $\frac{C D}{A B}=\frac{17}{8}-\frac{8}{17}=\frac{289-64}{136}-\frac{225}{136}=\frac{15^{2}}{8 \cdot 17}$. But that doesn't help a lot, does it?
So find $C D$ via the Pythagorean formula: $C D^{2}=15^{2}-\left(\frac{120}{17}\right)^{2}=\frac{255^{2}}{289}-\frac{14400}{289}=\frac{50625}{289}=\left(\frac{15^{2}}{17}\right)^{2}$
so $C D=\frac{15^{2}}{17}$ and so $A B=\frac{8 \cdot 17 C D}{15^{2}}=\frac{8 \cdot 17}{15^{2}} \frac{15^{2}}{17}=8$. So the area of the triangle is
$\frac{1}{2} A B \cdot A C=\frac{1}{2}(8)(15)=60$
6. Deduce the truth of the theorem stating that the sum of the interior angles of any triangle is 180 degrees. You might start by drawing a line through one of the vertices that is parallel to side opposite that vertex.
SOLN: Draw $D E$ through C and parallel to $A B$. Then

$\angle D C A=\angle A$ and $\angle E C B=\angle B$ are pairs of alternate interior angles formed when the transversals AC and BC cross the parallel lines. Since $\angle D C E$ is a straight angle and equal to the sum of its parts,
$\angle D C E=\angle D C A+\angle A C B+\angle B C E=180^{\circ}$ and the result follows by substitution
$\angle D C A+\angle A C B+\angle B C E=\angle A+\angle A C B+\angle B=180^{\circ}$
7. Consider quadrilateral $A B C D$ shown at right and suppose we know that $\angle A D B \cong \angle C B D$.
What type of quadrilateral can we deduce that $A B C D$ is? SOLN: Since transversal $B D$ cuts lines $A D$ and $B C$ making alternate interior angles equal, we can conclude that $A D$ is parallel to $B C$. However, $A B$ is not necessarily parallel to

$C D$, so the strongest conclusion we can draw is that $A B C D$ is a trapezoid.
8. Refer to the diagram to the right, where $\overrightarrow{A B} \| \overleftrightarrow{D E}$.
a. Prove that $\triangle C A B \sim \triangle C D E$

SOLN: Since transversals $C D$ and $C E$ cut parallels AB and DE , the corresponding angles $\angle C A B=\angle D \& \angle C B A=\angle E$ so $\triangle C A B \sim \triangle C D E$
b. Prove that $\frac{a}{b}=\frac{d}{e}$.

SOLN: Corresponding parts of similar triangles proportional so

$$
\frac{b+e}{b}=\frac{a+d}{a} \Leftrightarrow a(b+e)=b(a+d) \Leftrightarrow a b+a e=a b+b d \Leftrightarrow \frac{a e}{b e}=\frac{b d}{b e} \Leftrightarrow \frac{a}{b}=\frac{d}{e}
$$

c. Use this result to prove that the base angles of an isosceles trapezoid are congruent.

SOLN: Given isosceles trapezoid ABED with $\mathrm{AD}=\mathrm{BE}$ and AB parallel to DE but AD not parallel to BE , extend AD and EB until they meet at C .
9. Consider the circle inscribed in a regular hexagon, as shown in the diagram to the right.
a. What is the measure of central angle $\angle C O D$?

SOLN: Since hexagon is regular, its diagonals divide it into 6 equilateral triangles so that each central angle, including

$$
\angle C O D=60^{\circ}
$$

b. If $C D=8$, what is the area of the circle?

SOLN: Since the triangles are equilateral, the perpendicular bisector of CD forms a 30-60-90 triangle whose altitudes have lengths $=4 \sqrt{3}$, which is then the radius of the circle, whence the circle's area is
 $\pi(4 \sqrt{3})^{2}=48 \pi$

