Math 5 - Trigonometry - Chapter 4 Test - fall '06 Name \qquad
Show your work for credit. Write all responses on separate paper.

1. For arclength $t=\frac{17 \pi}{6}$ extending counterclockwise along the unit circle from $(1,0)$
a. Find the reference number for t.
b. Find the coordinates of the terminal point $P(x, y)$.
c. Illustrate this point's position on a plot of the unit circle.
2. Suppose $0.9 \leq t \leq 1.9$ highlight that interval on the perimeter of the unit circle
a. Approximate to the nearest tenth the interval of x values corresponding to this t interval.
b. Approximate to the nearest tenth the interval of y values corresponding to this t interval.

3. In the diagram at right, P is the terminal point for $t=\frac{2 \pi}{3}$ and Q is the reflection of P across the x-axis.
a. Explain why $\triangle A P Q$ is equilateral.
b. What are the coordinates of Q in terms of x and y ?
c. Set up an equation in terms of x and y based on $\overline{A P}^{2}=\overline{P Q}^{2}$ and show this is equivalent to $3 y^{2}=(x-1)^{2}$.
d. Use the fact that (x, y) is on the
 unit circle to substitute for y in terms of x and solve the resulting equation for x.
e. Substitute your value for x into the equation for in (c) and solve for y.
4. The terminal point for an arc length t on the unit circle is $\left(\frac{16}{65},-\frac{63}{65}\right)$.

Find $\sin t, \cos t$ and $\tan t$.
5. Write tan t in terms of $\cos t$, assuming the terminal point for t is in quadrant II.
6. Find the amplitude, period and phase shift of $y=-3+2 \sin \left(8 \pi\left(x+\frac{1}{16}\right)\right)$ and construct a careful, large graph showing one period of the function.
7. Find an equation for the sinusoid whose graph is shown:

8. Consider the function $f(x)=\tan \left(\frac{1}{2}\left(x+\frac{\pi}{4}\right)\right)$.
a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
b. Find the x-coordinates of three points that divide the interval between the vertical asymptotes into 4 equal parts and evaluate the function at these three points.
c. Construct a careful, large graph of the function showing how it passes through the three points and how it approaches the vertical asymptotes.
9. Suppose $\sin t=3 / 5$ and t is in the first quadrant. Find the following:
a. $\sin (t+\pi)$
b. $\sin \left(t+\frac{\pi}{2}\right)$
c. $\sin \left(\frac{\pi}{2}-t\right)$

Trigonometry - Chapter 4 Test Solutions - Fall '06

1. For arclength $t=\frac{17 \pi}{6}$ extending counterclockwise along the unit circle from $(1,0)$
a. The reference number for t is $\bar{t}=\left|\frac{17 \pi}{6}-3 \pi\right|=\frac{\pi}{6}$
b. The coordinates of the terminal point $P(x, y)$ are then $\left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right):$
c. The diagram at right illustrates this point's position on a plot of the unit circle.
2. Suppose $0.9 \leq t \leq 1.9$ highlight that interval on the perimeter of the unit circle
a. If $0.9 \leq t \leq 1.9$, then, as shown in the diagram, $0.3 \leq x \leq 0.6$ This is equivalent to $0.3 \leq \cos t \leq 0.6$.
b. If $0.9 \leq t \leq 1.9$, then, as shown in the diagram, $0.8 \leq y \leq 1$ This is equivalent to $0.8 \leq \sin t \leq 1$

3. In the diagram, P is the terminal point for $t=\frac{2 \pi}{3}$ and Q is the reflection of P across the x-axis.
a. Since the directed arc from A to $\mathrm{Q}, t=-\frac{2 \pi}{3}$ has the same length: $\overparen{A P}=\overparen{A Q}$. But this means that the arc $\overparen{Q P}=2 \pi-\overparen{A P}-\overparen{A Q}=\frac{2 \pi}{3}$ so that $\overparen{A P}=\overparen{A Q}=\overparen{P Q}$ whence the corresponding chords are also equal and $\triangle A P Q$ is equilateral.
b. The coordinates of Q are $(x,-y)$.
$\overline{A P}^{2}=\overline{P Q}^{2} \Leftrightarrow(2 y)^{2}=(1-x)^{2}+y^{2}$
c.

$$
\Leftrightarrow 3 y^{2}=(x-1)^{2}
$$

d. Since (x, y) is on the unit circle, $y^{2}=1-x^{2}$ and we can to substitute for y to get $3\left(1-x^{2}\right)=(x-1)^{2}$. Expand, collect and get zero on one side:
$\Leftrightarrow 3-3 x^{2}=x^{2}-2 x+1 \Leftrightarrow 2 x^{2}-x-1=0$, which is factorable: $(2 x+1)(x-1)=0 \Rightarrow x=-1 / 2$ or $x=1$
e. If $x=-1 / 2$ then $y= \pm \sqrt{1-\left(-\frac{1}{2}\right)^{2}}= \pm \sqrt{\frac{3}{4}}= \pm \frac{\sqrt{3}}{2}$.
4. $\left(\frac{16}{65},-\frac{63}{65}\right)$ implies $\sin t=-\frac{63}{65}, \cos t=\frac{16}{65}$ and $\tan t=-\frac{63}{16}$
5. In quadrant II $\tan t=\frac{\sin t}{\cos t}=\frac{\sqrt{1-\cos ^{2} t}}{\cos t}$
6. The amplitude, period and phase shift of $y=-3+2 \sin \left(8 \pi\left(x+\frac{1}{16}\right)\right)$ is 2 , the period is $1 / 4$ and the phase shift is $-1 / 16$. Here's a graph showing two periods.

7. The sinusoid shown below has y values ranging from -1 to 5 so the line of equilibrium is $y=2$ and the amplitude is 3 . There's a peak at $x=-1$ and the next is at $x=7$, so the period is 8 . The wave is at equilibrium at $x=5$ so the phase shift is -3 . Thus the sinusoid can be expressed either as a sine or a cosine: $y=2+3 \sin \left(\frac{\pi}{4}(x+3)\right)=2+3 \cos \left(\frac{\pi}{4}(x+1)\right)$

8. Consider the function $f(x)=\tan \left(\frac{1}{2}\left(x+\frac{\pi}{4}\right)\right)$.
a. Vertical asymptotes can be found by solving $\frac{1}{2}\left(x+\frac{\pi}{4}\right)=\frac{\pi}{2}+k \pi$ where k is any integer: $\frac{1}{2}\left(x+\frac{\pi}{4}\right)=\frac{\pi}{2}+k \pi \Leftrightarrow x+\frac{\pi}{4}=\pi+2 \pi k \Leftrightarrow x=\frac{3 \pi}{4}+2 \pi k$, whence adjacent asymptotes can be found by plugging in, say, $k=0$ and $k=1: x=\frac{3 \pi}{4}$ or $x=\frac{11 \pi}{4}$
b. The distance between asymptotes is one wavelength, so we add a quarter wavelength to the first asymptote three times to get $x_{1}=\frac{3 \pi}{4}+\frac{2 \pi}{4}=\frac{5 \pi}{4}, x_{2}=\frac{7 \pi}{4}, x_{3}=\frac{9 \pi}{4}$. Thus the points to plot are $f\left(\frac{5 \pi}{4}\right)=\tan \left(\frac{1}{2}\left(\frac{5 \pi}{4}+\frac{\pi}{4}\right)\right)=\tan \frac{3 \pi}{4}=-1, f\left(\frac{7 \pi}{4}\right)=0$ and $f\left(\frac{9 \pi}{4}\right)=1$
c. The graph at right shows how the function passes through the three points and approaches the vertical asymptotes.

9. Suppose $\sin t=3 / 5$ and t is in the first quadrant. Find the following:
a. $\quad \sin (t+\pi)=-\sin t=-\frac{3}{5}$
b. $\sin \left(t+\frac{\pi}{2}\right)=-\cos t=-\frac{4}{5}$
c. $\sin \left(\frac{\pi}{2}-t\right)=\cos t=\frac{4}{5}$

