Math 5 - Chapter G Test SOLNS - Fall '10

1. Given lines a, b and c intersecting at point P in the diagram to the right, what is the value of x ?

SOLN: Since vertical angles are equal and a straight angle is 180°, we have $x+20+2 x+x=180$ so that $4 x=160$ and so $x=40$.

2. Given that $A B$ is a transversal cutting parallels in the diagram at right, find the value of x. Explain your reasoning.

SOLN: Either supplementary angle at A will have measure $180-2 \mathrm{x}$ and will either correspond to $\mathrm{x}+$ 57 or be an alt. int. angle to $x+57$, so $180-2 x=x$
 +57 so that $3 x=123$ whence $x=41$.
3. Given the transversal $A B$ cutting parallel lines $A C \| B D$ in the diagram at right, explain how you deduce
a. $\angle 2 \mathrm{SOLN}: \angle \mathrm{CAB}$ is supplementary to 128 and corresponds to $\angle 2$ so $\angle 2=180-128=52^{\circ}$

b. $\angle 1$ SOLN: $\angle 1$ is complementary to $\angle 2$ so $\angle 1=90-52=38^{\circ}$
c. $\angle 3 \mathrm{SOLN}$: is an alt. int angle to $\angle 1$ when BC cuts $A C \| B D$ so $\angle 3=38^{\circ}$
4. Find the value of x that will work in the figure at right. SOLN: Label the vertices (shown.) $\triangle A B D$ is isosceles so $\angle \mathrm{ADB}=\angle \mathrm{ABD}$ and since the sum of int \angle 's is $180^{\circ}, \mathrm{x}+2 \angle \mathrm{ADB}=180 \leftrightarrow \angle \mathrm{ADB}=90-\mathrm{x} / 2$. $\angle \mathrm{ADC}$ is straight, so $\angle \mathrm{BDC}=180-\angle \mathrm{ADB}=90+\mathrm{x} / 2$ and since $\triangle A B D$ is also isosceles, $\mathrm{x}-17=1 / 2(180-\angle \mathrm{BDC})=1 / 2(90-\mathrm{x} / 2) \leftrightarrow$ $\mathrm{x}-17=45-\mathrm{x} / 4 \leftrightarrow 5 \mathrm{x} / 4=61 \leftrightarrow \mathrm{x}=244 / 5=48.8^{\circ}$

5. Given the figure at right with $A C=C B$ and $\angle D A B=\angle E B A$, prove that $A D=E B$. Use a two-column proof format.

Statement

1. $A C=C B \& \angle D A B=\angle E B A$, Given
2. $\angle C A B=\angle C B A$, since base $\angle \mathrm{s}$ of isos $\Delta=$
3. $\angle C A D=\angle C A B-\angle D A B$ subtraction $\angle C B E=\angle C B A-\angle E B A \quad$ postulate
4. $\angle C A D=\angle C B E$ by transitivity of $=$
5. $\angle \mathrm{C}=\angle \mathrm{C}$ by reflexive property of $=$
6. $\triangle \mathrm{CAD}=\triangle \mathrm{CBE}$ by ASA
7. $\mathrm{BE}=\mathrm{AD}$ by CPCTC

8. A $16-\mathrm{ft}$ ladder is leaning against a wall which is perpendicular to the floor. If the ladder reaches 12 ft up the wall, how far away from the base of the wall is the foot of the ladder?
SOLN: This is the short leg of a right triangle: $x=\sqrt{16^{2}-12^{2}}=\sqrt{112}=\sqrt{16 \cdot 7}=4 \sqrt{7} \mathrm{ft}$.
9. Find the lengths of AB and BC in the triangle at right. SOLN: The hypotenuse $A B$ is twice the short leg, so $\mathrm{AB}=24$. Then by Pythagoras $\mathrm{BC}=\operatorname{sqrt}\left(24^{2}-12^{2}\right)$ $=\operatorname{sqrt}\left(12^{2}\right)\left(\operatorname{sqrt}\left(2^{2}-1\right)=12 \operatorname{sqrt}(3)\right.$

10. Consider this triangle at right:
a. Find the perimeter of the triangle. SOLN: The legs are $\frac{17 \sqrt{2}}{2}$ so the total perimeter is $17+17 \sqrt{2}=17(1+\sqrt{2})$
b. Find the area of the triangle. SOLN: $1 / 2 \mathrm{bh}=\frac{1}{2}\left(\frac{17 \sqrt{2}}{2}\right)^{2}=\frac{289}{4}$

11. If $A B C D$ (at right) is an isosceles trapezoid.
a. Find the perimeter.

SOLN: First find x by noting it's the hypotenuse of a right triangle with legs of 6 and 10: $x=\sqrt{6^{2}+10^{2}}=\sqrt{136}=2 \sqrt{34}$
 so the perimeter is $3+23+2 \mathrm{x}=26+4 \sqrt{34}$ units
b. Find the area: $1 / 2\left(b_{1}+b_{2}\right) h=1 / 2(26)(6)=78$ square units.
10. A sector in a circle of radius 10 has a central angle of 72°.
a. Find the perimeter of the sector.

SOLN: Perimeter $=(72 / 360)(2 \pi r)+2 r=4 \pi+20$ units.
b. Find the area of the sector.

SOLN: Area $=(72 / 360)\left(\pi r^{2}\right)=20 \pi$ square units
11. Given rectangle ABCD in the diagram at right, with $\triangle C F G$ containing area 135 square units, find the area of the quadrilateral AEFG.
SOLN: The area of $\Delta \mathrm{CFG}=1 / 2(\mathrm{CD}) 18=135$ means that $\mathrm{CD}=15$. Thus the area of $\operatorname{AEFG}=15(22)-10-60-135=125$ sq. units
12. Find the area of the shaded region below. ABC is a right triangle. $\widehat{D E}$ is a semicircle of radius 8 in .
SOLN: AC $=\sqrt{30^{2}-24^{2}}=\sqrt{324}=18$ so the area of the shaded region is $1 / 2(18)(24)-1 / 2 \pi 8^{2}=216-32 \pi$ square inches.

