Math 5 - Trigonometry - fall ' 10 - Chapter 2 Test Review
The instructions will ask you to show all work for credit and write all responses on separate paper.

1. Consider the line passing the points $(20,100)$ and $(7,9)$ in the $x-y$ Cartesian coordinate plane.
a. Write a formula for the function that describes this line in slope-intercept form: $f(x)=m x+b$.
b. Write a formula for the function for the line parallel to this line and passing through $(0,8)$.
c. Write a formula for the function of the line through $(0,0)$ and perpendicular to this line.
2. Four lines intersect at the origin to create an asterisk with 8 congruent 45° angles. Write one possible list for the functions describing these four lines.
3. Compute and simplify the average rate of change of $f(x)=2 x^{2}+8 x$ over the given interval. Remember that the average rate of change on the interval $[a, b]$ is the slope of the secant line connecting $[a, f(a)]$ with $[b, f(b)]$.
a. $[0,3]$
b. $[a, a+h]$
4. Consider the function $f(x)=\frac{x}{x^{2}+1}$.
a. Simplify an expression for the average rate of change of this function over the interval $[0,2]$
b. Simplify an expression for the average rate of change of this function over the interval $[1,1+h]$
c. Find an equation for the line normal to the curve at the point where $x=1$.
5. Consider the quadratic $f(x)=2 x^{2}-3 x+1$
a. Express the quadratic function in standard (vertex) form.
b. Express the quadratic function in factored form and give the coordinates of the x-intercepts.
c. Sketch its graph, showing the coordinates of the vertex and all intercepts.
6. Consider the quadratic $f(x)=-x^{2}+2 x+2$
a. Express the quadratic function in standard (vertex) form.
b. Express the zeros (x-intercepts) of the parabola in simplest radical form.
c. Sketch its graph, showing the coordinates of the vertex and all intercepts.
7. Suppose $f(x)=\frac{x}{x+2}$.
a. Find the domain of $(f \circ f)(x)$
b. Find the domain of $(f \circ f \circ f)(x)$
8. Suppose $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x^{2}-1}$.
a. Find the domain of $(g \circ f)(x) \quad$ b. Find the domain of $(f \circ g)(x)$
9. Find the maximum value of the given function and state its range in interval notation.
a. $\quad f(x)=-2(x-3)^{2}+8$
b. $f(x)=-2 x^{2}+8 x+1$
c. $f(x)=(2 x+1)(2 x+3)$
10. Consider the quadratic $f(x)=-3 x^{2}+5 x+7$
a. Express the quadratic function in standard form.
b. Sketch its graph.
c. What transformations would be required to transform this function to $y=x^{2}$?
11. Given the graph of $y=f(x)$ shown at right and the given transformation, tabulate the transformed coordinate values of points at A, B, C, D, E, F and G, and plot the given transformation
a. $y=2 f(x)$
b. $y=1+f(x-2)$
c. $y=10-f(x)$

12. Given the graph of $y=f(x)$ shown at right, graph
a. $\quad y=2 f(x)$
b. $y=f\left(\frac{x}{2}\right)$
c. $y=2 f(1-x)$
d. $y=2-f(x+1)$

13. The total surface area of a cylinder is π square units.
a. Find a function that models the cylinder's height as a function of its radius.
b. Find a function that models the cylinder's radius as a function of its height.
14. Find a formula for the inverse function of $f(x)=\sqrt[3]{x+8}$ and plot the function and its inverse together in the same coordinate plane, showing the symmetry of these function across the line $y=x$.
15. A mouse stands at point A on the bank of a straight canal, 20 feet wide. To reach point B, 70 feet down the canal on the opposite bank, it swims to a point P on the opposite bank and then runs the remaining distance to B. The mouse swims at 5 feet per minute and crawls at 10 feet per minute.
16. Consider $f(x)=x^{2}$
a. Write a formula for the function that results from shifting 2 units left, reflecting in the y-axis and then stretching horizontally by a factor 3 , in that order.
b. What transformations on $f(x)$, in order, would produce this formula: $y=2-\left(\frac{x}{2}-1\right)^{2}$
17. Suppose $f(x)=\sqrt{x-1}$ and $g(x)=\frac{1}{x-2}$.
a. Find the domain of $(f \circ g)(x)$
b. Find the domain of $(g \circ f)(x)$
18. Find a formula for the inverse function of $f(x)=(x+1)^{3}-3$ and sketch a graph for $f^{-1}(x)$ and $f(x)$ together showing the symmetry through the line $y=x$.
