Math 5 - Trigonometry - fall '10 - Chapter 2 TestName_Show all work for credit and write all responses on separate paper.Don't use a calculator.

- 1. Consider the line passing through the origin (0,0) and the center of the circle described by $(x-3)^2 + (y-4)^2 = 25$. NOTE: The general form for a circle centered at (h, k) with radius *r* is $(x-h)^2 + (y-k)^2 = r^2$
 - a. Write a formula for the function that describes this line in slope-intercept form: f(x) = mx + b.
 - b. Write a formula for the function for the line parallel to this line and passing through (0,8).
 - c. Write a formula for the function of the line through (0,8) and perpendicular to this line.
- 2. Compute and simplify the average rate of change of $f(x) = 2x^3$ over the given interval. Recall that this average rate of change is the slope of the secant line connecting [a, f(a)] with [b, f(b)].
 - a. [0, *h*]
 - b. [-*h*, *h*]
- 3. Consider the quadratic $f(x) = 3x^2 6x + 2$
 - a. Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$
 - b. Find the coordinates of the *x*-intercepts.
 - c. Express the quadratic function in factored form: $y = a(x r_1)(x r_2)$
 - d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
- 4. Find the maximum value of the given function and state its range in interval notation.
 - a. $f(x) = -4(x-1)^2 + 10$
 - b. $f(x) = -2x^2 + 8x + 1$
- 5. Consider the quadratic $f(x) = -2x^2 + 4x + 3$
 - a. Express the quadratic function in standard form.
 - b. Sketch its graph showing the position of the vertex.
 - c. What sequence of
 - (i) vertical shift,
 - (ii) reflection,
 - (iii) vertical shrink, and
 - (iv) horizontal shift

would be required to transform this function to $y = x^2$?

6. Given the graph of y = f(x) shown at right and the given transformation, tabulate the transformed coordinate values of the key points in the graph. Then plot the given transformation on the paper at right.

1	en me paper av ingite									
	x		-4	-2	0		2]		
	f(x))	8	2	0	-	-8]		
ć	a. y	=	1 + f	(x-2)	2)					
			Ĵ	x						
		1	+f(x-2)					
1	5 . y	=	$\frac{1}{2}f($	x/3)						
			x							
		1	$\frac{1}{2}f(x)$	c/3)						

- 7. The surface area of a sphere is a function of the radius according to $S = f(r) = 4\pi r^2$ and the volume f a sphere is a function of the radius according to $V = g(r) = \frac{4}{3}\pi r^3$. Find a function that gives the surface area, *S*, as a function of the Volume, *V*.
- 8. Suppose $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x-2}$.
- a. What is the domain of f?
- b. What is the range of f?
- c. What is the domain of g?
- d. Find a formula for and determine the domain of $(g \circ f)(x)$
- e. Find a formula for and determine the domain of $(f \circ g)(x)$
- 9. Find a formula for the inverse function of $f(x) = \frac{1}{3}x 2$ and sketch a graph for $f^{-1}(x)$ and f(x) together showing the symmetry through the line y = x.

Math 5 – Trigonometry – fall '10 – Chapter 2 Test Solutions

- a. Consider the line passing through the origin (0,0) and the center of the circle described by $(x-3)^2 + (y-4)^2 = 25$.
- b. Write a formula for the function that describes this line in slope-intercept form: f(x) = mx + b. SOLN: The line will pass through (0,0) and (3,4) so $m = \frac{4-0}{3-0} = \frac{4}{3}$ and since b = 0, $y = \frac{4}{3}x$
- c. Write a formula for the function for the line parallel to this line and passing through (0,8). SOLN: $b = 8 \Rightarrow y = \frac{4}{3}x + 8$
- d. Write a formula for the function of the line through (0,8) and perpendicular to this line. SOLN: $m_{\perp} = -\frac{3}{4}$; $b = 8 \Rightarrow \boxed{y = -\frac{3}{4}x + 8}$
- 2. Compute and simplify the average rate of change of $f(x) = 2x^3$ over the given interval. Recall that this average rate of change is the slope of the secant line connecting [a, f(a)] with [b, f(b)].

a. [0, h] SOLN:
$$\frac{f(h) - f(0)}{h - 0} = \frac{2h^3 - 0}{h} = 2h^2$$

b. [-h, h] SOLN: $\frac{f(h) - f(-h)}{h - (-h)} = \frac{2h^3 - (-2h^3)}{2h} = \frac{4h^3}{2h} = 2h^2$

- 3. Consider the quadratic $f(x) = 3x^2 6x + 2$
 - a. Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$

SOLN:
$$f(x) = 3x^2 - 6x + 2 = 3(x^2 - 2x) + 2 = 3(x^2 - 2x + 2) + 2 - 3 = 3(x - 1)^2 - 1$$

b. Find the coordinates of the *x*-intercepts.

SOLN:
$$y = 0 \Leftrightarrow 3(x-1)^2 - 1 = 0 \Leftrightarrow (x-1)^2 = \frac{1}{3} \Leftrightarrow x-1 = \frac{\pm\sqrt{3}}{3} \Leftrightarrow x = 1 \pm \frac{\sqrt{3}}{3}$$

c. Express the quadratic function in factored form: $y = a(x - r_1)(x - r_2)$

SOLN:
$$y = 3\left(x - \left(1 - \frac{\sqrt{3}}{3}\right)\right)\left(x - \left(1 + \frac{\sqrt{3}}{3}\right)\right) = 3\left(x - 1 + \frac{\sqrt{3}}{3}\right)\left(x - 1 - \frac{\sqrt{3}}{3}\right)$$

d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
SOLN: A table of values is always helpful:

x	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$
у	$\frac{23}{4}$	2	$-\frac{1}{4}$	-1	$-\frac{1}{4}$	2	$\frac{23}{4}$

- 4. Find the maximum value of the given function and state its range in interval notation.
 - a. $f(x) = -4(x-1)^2 + 10$

SOLN: The maximum value of occurs at the vertex where y = 10. The range is $[-\infty, 10)$

- b. $f(x) = -2x^2 + 8x + 1$ SOLN: $f(x) = -2x^2 + 8x + 1$ $f(x) = -2(x-2)^2 + 9$ so the max value of occurs at the vertex where y = 9. The range is $[-\infty, 9]$
- 5. Consider the quadratic $f(x) = -2x^2 + 4x + 3$
 - a. Express the quadratic function in standard form. SOLN: $f(x) = -2(x-1)^2 + 5 \Leftrightarrow y-5 = -2(x-1)^2$
 - b. Sketch its graph showing the position of the vertex. SOLN:
 - c. What sequence of

(i) vertical shift, SOLN: Shift down 5 by $(y \leftarrow y+5)$ (ii) reflection, SOLN: Reflect across x-axis by $(y \leftarrow -y)$ (iii) vertical shrink, SOLN: Shrink vertically by $(y \leftarrow 2y)$

(iv) horizontal shift SOLN: Shift left 5 by ($x \leftarrow x+1$) In the above order, these transforms lead to the following sequence of equations:

$$y-5 = -2(x-1)^2 \rightarrow y = -2(x-1)^2 \rightarrow y = 2(x-1)^2$$
$$\rightarrow y = (x-1)^2 \rightarrow y = x^2$$

6. Given the graph of y = f(x) shown at right and the given transformation, tabulate the transformed coordinate values of the key points in the graph. Then plot the given transformation on the paper at right.

<i>x</i>	-4	-2	0	2
f(x)	8	2	0	-8

a. y = 1 + f(x-2):

x	-2	0	2	4
1+f(x-2)	9	3	1	-7

b. $y = \frac{1}{2} f(x/3)$:

x	-12	-6	0	6
$\frac{1}{2}f(x/3)$	4	1	0	-4

- 7. Find a function that gives the surface area, *S*, as a function of the Volume, *V*. SOLN: The surface area is $V = \frac{4}{3}\pi r^3 \Leftarrow r = \left(\frac{3V}{4\pi}\right)^{1/3}$, so $V = 4\pi \left(\frac{3V}{4\pi}\right)^{2/3} = \left(4\pi\right)^{3/3} \left(\frac{9V^2}{16\pi^2}\right)^{1/3} = \left(36\pi V^2\right)^{1/3}$
- 8. Suppose $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x-2}$.
 - a. Then $(g \circ f)(x) = \frac{1}{\sqrt{x-2}}$ has domain $x \in [0,4) \cup (4,\infty)$
 - b. And $(f \circ g)(x) = (x-2)^{-1/2}$ has domain $x \in (2,\infty)$

