Math 5 - Trigonometry - fall ' 10 - Chapter 5 Test - Fair Game Problems

1. Find an equation for the parabola with vertex at $(0,0)$ and directrix $x=2$. What is the focal diameter? Construct a careful graph.
2. Consider the conic described by $4 x^{2}+y^{2}=4$.
a. Where are the vertices? Give coordinates.
b. Where are the foci? Give coordinates.
c. Find the eccentricity.
d. Write parameteric equations for this conic.
e. Construct a careful graph showing the key features.
3. Consider the conic described by $4 x^{2}-y^{2}=-4$.
a. Where are the vertices? Give coordinates.
b. Where are the foci? Give coordinates.
c. Write equations for the asymptotes.
d. Write parameteric equations for this conic.
e. Construct a careful graph showing the key features.

In $4-6$, write an equation for the conic whose graph is shown.
4.

5.

6.

7. Write in standard form and sketch a graph: $x^{2}+2 y^{2}+3 x+4 y+5=0$
8. Write in standard form and sketch a graph: $x^{2}-2 y^{2}+3 x-4 y+5=0$
9. Write an equation for the hyperbola with foci at $(1 \pm \sqrt{2}, 0)$ and asymptotes $y=1 \pm x$
10. Write a polar equation of a conic with the focus at the origin and the given data.
a. Parabola, vertex at $(r, \theta)=(1, \pi / 2)$.
b. Ellispse, eccentricity 0.05 , vertex at $(r, \theta)=(2, \pi)$.
c. Hyperbola, eccentricity 20 and directrix $r=-4 \csc \theta$.
11. Find the eccentricity and identify the conic with polar equation $r=\frac{5}{2-3 \sin \theta}$.

Find the vertices, foci and asymptotes and sketch a graph showing these.
12. Consider the parametric curve given by

$$
\begin{aligned}
& x=1+2 \cos \theta \\
& y=4+3 \sin \theta \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

a. Construct a careful graph for the curve.
b. Eliminate the parameter θ to obtain an equation for this curve in rectangular coordinates.
13. A light bulb is to be placed at the focus of a parabolic dish as shown in the figure at right. How high above the bottom should the light be placed?
14. Find an equation for the ellipse with foci $(\pm 10,0)$ and vertices $(\pm 11,0)$.

15. Find the vertices, foci, and asymptotes of the hyperbola $144 y^{2}-36 x^{2}=3600$ and sketch a graph illustrating these features.
16. Find an equation for the hyperbola with asymptotes $y= \pm \frac{2}{3} x$ and vertices at
a. $(0, \pm 3)$
b. $(\pm 3,0)$
17. Complete the square to determine whether the equation represents an ellipse, a parabola, or a hyperbola. If the graph is an ellipse, find the center, foci, eccentricity and endpoints of the major and minor axes. If it is a parabola, find the vertex, focus and directrix. If it is a hyperbola, find the center, foci, vertices and asymptotes.
a. $16 x^{2}-96 x+9 y^{2}=0$
b. $36 y^{2}-x^{2}-8 x-52=0$
c. $x^{2}-8 x-32 y-240=0$
18. Find parametric equations to describe the hyperbola $4(x-1)^{2}-25(y-4)^{2}=100$
19. Write the equation for the conic section described by $\begin{aligned} & y=1+8 \sin (2 t) \\ & x=9+72 \cos (2 t)\end{aligned}$ in rectangular form.

Math 5 - Trigonometry - fall '10 - Chapter 5 -Fair Game Problems Solutions

1. Find an equation for the parabola with vertex at $(0,0)$ and directrix $x=2$. What is the focal diameter? Construct a careful graph.
SOLN: with $p=-2$ we have the equation $4 p x=-8 x=y^{2}$ and the focal diameter stretches from $(-2,-4)$ to $(-2,4)$ and has length 8 :

2. Consider the conic described by $4 x^{2}+y^{2}=4$.
a. $\quad 4 x^{2}+y^{2}=4 \Leftrightarrow x^{2}+\frac{y^{2}}{4}=1$ has vertices at $(\pm 1,0),(0, \pm 2)$.
b. $\quad c^{2}=a^{2}-b^{2}=4-1=3 \Rightarrow c=\sqrt{3}$ so the foci are at $(0, \pm \sqrt{3})$
c. The eccentricity is $\frac{c}{a}=\frac{\sqrt{3}}{2} \approx 87 \%$
d. Parametric equations: $x=\cos t \quad y=2 \sin t$
e. A careful graph showing the key features is shown at right:

3. Consider the conic described by $4 x^{2}-y^{2}=-4$.
a. $4 x^{2}-y^{2}=-4 \Leftrightarrow \frac{y^{2}}{4}-x^{2}=1$ has vertices at $(0, \pm 2)$
b. Here $c^{2}=a^{2}+b^{2}=4+1=5 \Rightarrow c=\sqrt{5}$ so the foci are at $(0, \pm \sqrt{5})$
c. The asymptotes are along $y= \pm 2 x$
d. Parametric equations: $x=\tan t \quad y=2 \sec t$
e. A careful graph showing the key features is shown at right.

In $4-6$, write an equation for the conic whose graph is shown.
4. In the parabola below, the vertex is at $(1,0)$ so the equation is $4 p(x-1)=y^{2}$. Since the parabola passes through $(9,2)$ we must have $4 p(9-1)=2^{2} \Leftrightarrow p=\frac{1}{8}$, so the parabola's equation can be written $\frac{1}{2}(x-1)=y^{2}$

5. The ellipse is centered at $(1,2)$ with $a=4, b=3: \frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{16}=1$

6. The hyperbola is centered at $(1,0)$, has vertices at a distance $a=2$ from the center. Thus we can write $\frac{(x-1)^{2}}{4}-\frac{y^{2}}{b^{2}}=1$. Now plug in the coordinates of the given point: $\frac{(7-1)^{2}}{4}-\frac{(2 \sqrt{2})^{2}}{b^{2}}=1 \Leftrightarrow 9-\frac{8}{b^{2}}=1$ Thus $b=1$ and $\frac{(x-1)^{2}}{4}-y^{2}=1$

7. Write in standard form and sketch a graph: $x^{2}+2 y^{2}+3 x+4 y+5=0$

SOLN: $x^{2}+3 x+\frac{9}{4}+2\left(y^{2}+2 y+1\right)=-5+\frac{9}{4}+2 \Leftrightarrow \frac{-\left(x+\frac{3}{2}\right)^{2}}{3 / 4}-\frac{(y+1)^{2}}{3 / 8}=1$. Since the left side of the equation is less than or equal to zero for all x and y, there is no graph in the real plane.
8. Write in standard form and sketch a graph: $x^{2}-2 y^{2}+3 x-4 y+5=0$ SOLN: $x^{2}+3 x+\frac{9}{4}-2\left(y^{2}+2 y+1\right)=-5+\frac{9}{4}-2 \Leftrightarrow \frac{(y+1)^{2}}{19 / 8}-\frac{\left(x+\frac{3}{2}\right)^{2}}{19 / 4}=1$.

This means the vertices of the hyperbola are at $\left(-\frac{3}{2},-1 \pm \frac{\sqrt{38}}{4}\right)$ and the asymptotes are along $y+1= \pm \frac{\sqrt{2}}{2}\left(x+\frac{3}{2}\right)$

9. Write an equation for the hyperbola with foci at $(1 \pm \sqrt{2}, 0)$ and asymptotes $y=1 \pm x$ SOLN: The center is at $(1,0)$ and $c^{2}=2$. From the slopes of the asymptotes we know $a=b$ so $c^{2}=a^{2}+b^{2} \Leftrightarrow 2=2 a^{2}$ which means that $a=b=1$. Thus the equation is $(x-1)^{2}-y^{2}=1$
10. Write a polar equation of a conic with the focus at the origin and the given data.
a. Parabola, vertex at $(r, \theta)=(1, \pi / 2)$. SOLN: The rectangular coordinates for the vertex are $(0,1)$ and since the focus is at $(0,0), p=1$, and the directrix must be $y=2$. The rectangular equation is thus $-4(y-1)=x^{2} r=\frac{2}{1+\sin \theta}$ or $r=\frac{-2}{1-\cos \left(\theta-\frac{\pi}{2}\right)}$, either of these will be a
good polar form for the parabola. We can easily convert to rectangular coordinates:

$$
=\frac{-2}{1-\sin \theta} \Rightarrow r-r \sin \theta=-2 \Leftrightarrow r=y-2 \Rightarrow x^{2}+y^{2}=y^{2}-4 y+4 \Leftrightarrow-4(y-1)=x^{2}
$$

b. Ellispse, eccentricity 0.05 , vertex at $(r, \theta)=(2, \pi)$.

SOLN: Here the rectangular coordinates of one vertex are $(-2,0)$.
We can plug the polar coordinates, $(r,-\theta)=(2, \pi)$ values into the polar form and get $2=\frac{0.05 d}{1-0.05 \cos \pi}=\frac{d}{21} \Rightarrow d=42$, so the polar form of the equation is $r=\frac{2.1}{1-0.05 \cos \theta}$. At this point, the question has been answered, but there are some obvious follow-up questions, such as "What is the rectangular equation form for this ellipse?" We can find the center as the average of the two x-intercepts: $\frac{1}{2}\left(\frac{2.1}{1-0.05}-2\right)=\frac{1}{2}\left(\frac{210}{95}-2\right)=\frac{2}{19}$ so that $c=\frac{2}{19}$ and $a=\frac{40}{19}$, whence $b^{2}=a^{2}-c^{2}=\left(\frac{2 \sqrt{399}}{19}\right)^{2}$ and the rectangular form of the equation is $\left(\frac{19}{40}\right)^{2}\left(x-\frac{2}{19}\right)^{2}+\left(\frac{19}{2 \sqrt{399}}\right)^{2} y^{2}=1$
c. Hyperbola, eccentricity 20 and directrix $r=-4 \csc \theta$.

SOLN: The rectangular form for the equation of the directrix is $y=-4$.
A polar form of the equation is $r=\frac{80}{1-20 \sin \theta}$. This means the vertices are at $r\left(\frac{\pi}{2}\right)=\frac{80}{-19}=\frac{-80}{19}$ and $r\left(-\frac{\pi}{2}\right)=\frac{80}{21}$ which correspond to the y-intercepts, $\left(0,-\frac{80}{19}\right)$ and $\left(0,-\frac{80}{21}\right)$. Thus the center of the hyperbola the average of these:
$-k=-c=\frac{1}{2}\left(-\frac{80}{19}-\frac{80}{21}\right)=-\frac{1}{2}\left(\frac{80(21+19)}{19 * 21}\right)=\frac{-1600}{399}$, which means the distance from the center to vertex is $a=\frac{80}{19}-\frac{1600}{399}=\frac{80}{399}$ from which we get $b^{2}=c^{2}-a^{2}=$ $\frac{1600^{2}-80^{2}}{399^{2}}=\frac{2553600}{399^{2}}=\left(\frac{80}{\sqrt{399}}\right)^{2}$ whence the equation $\left(\frac{399}{80}\right)^{2}\left(y+\frac{1600}{399}\right)^{2}+\left(\frac{\sqrt{399}}{80}\right)^{2} y^{2}=1$.
11. Find the eccentricity and identify the conic with polar equation $r=\frac{5}{2-3 \sin \theta}$. Find the vertices and foci and sketch a graph.
SOLN: $r=\frac{5}{2-3 \sin \theta}=\frac{2.5}{1-1.5 \sin \theta}$ shows $e=1.5$, so the conic is an hyperbola. Tabulate the extreme points in polar coordinates to determine the vertices are at $(0,-5)$ and $(0,-1)$. The center is $(0,-3)$, so $a=2$ whence $c=a e=3$ and the foci are at $(0,0)$ and $(0,-6)$ and since $b=\sqrt{c^{2}-a^{2}}=\sqrt{9-4}=\sqrt{5}$, the asymptotes are along $y+3= \pm \frac{2 \sqrt{5}}{5} x$

r	$\frac{5}{2}$	-5	$\frac{5}{2}$	1
θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$

12. Consider the parametric curve given by

$$
\begin{aligned}
& x=1+2 \cos \theta \\
& y=4+3 \sin \theta \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

a. Construct a careful graph for the curve.
b. Eliminate the parameter θ to obtain an equation for this curve in rectangular coordinates.

$$
\frac{(x-1)^{2}}{4}+\frac{(y-4)^{2}}{9}=1
$$

13. A light bulb is to be placed at the focus of a parabolic dish as shown in the figure at right. How high above the bottom should the light be placed?
SOLN: If the parabola is opening upwards from a vertex at $(0,0)$, then it has the form $4 \mathrm{p} y=x^{2}$, whence $44 p=64$ and the distance from the focus to the vertex is $p=16 / 11$.

14. Find an equation for the ellipse with foci $(\pm 10,0)$ and vertices $(\pm 11,0)$.

SOLN: $b^{2}=a^{2}-c^{2}=11^{2}-10^{2}=21$ so the equation is $\frac{x^{2}}{121}+\frac{y^{2}}{21}=1$
15. Find the vertices, foci, and asymptotes of the hyperbola $144 y^{2}-36 x^{2}=3600$ and sketch a graph illustrating these features.
SOLN: $144 y^{2}-36 x^{2}=3600 \Leftrightarrow \frac{y^{2}}{25}-\frac{x^{2}}{100}=1$ has vertices at foci at $(0, \pm 5)(0, \pm 5 \sqrt{5})$ The asymptotes are $y= \pm \frac{1}{2} x$
16. Find an equation for the hyperbola with asymptotes $y= \pm \frac{2}{3} x$ and vertices at
a. $(0, \pm 3)$ So we know the ratio of $b / a=2 / 3$ and that $b=3$. Thus $a=9 / 2$ and the equation is

$$
\frac{y^{2}}{9}-\frac{4 x^{2}}{81}=1
$$

b. $(\pm 3,0)$ Here $a=3$ so $b=2$ and the equation is simply $\frac{x^{2}}{9}-\frac{x^{2}}{4}=1$
17. Complete the square to determine whether the equation represents an ellipse, a parabola, or a hyperbola. If the graph is an ellipse, find the center, foci, eccentricity and endpoints of the major and minor axes. If it is a parabola, find the vertex, focus and directrix. If it is a hyperbola, find the center, foci, vertices and asymptotes.
a. $16 x^{2}-96 x+9 y^{2}=0 \Leftrightarrow 16\left(x^{2}-6 x+9\right)+9 y^{2}=144 \Leftrightarrow \frac{(x-3)^{2}}{9}+\frac{y^{2}}{16}=1$ is an ellipse with center $(3,0)$, endpoints of minor axes at $(0,0)$ and $(6,0)$ and major axes at $(3,-4)$ and $(3,4)$ with foci at $(3, \pm \sqrt{7})$ and eccentricity $\sqrt{7} / 4$
b. $36 y^{2}-x^{2}-8 x-52=0 \Leftrightarrow 36 y^{2}-(x-4)^{2}=36 \Leftrightarrow y^{2}-\frac{(x-4)^{2}}{36}=1$ is an ellipse with center $(-4,0)$, vetices $(-4,-1)$ and $(-4,1)$, foci at $(-4, \pm \sqrt{37})$ and asymptotes $y= \pm \frac{1}{6}(x-4)$.
c. $x^{2}-8 x-32 y-240=0 \Leftrightarrow 32(y+8)=(x-4)^{2}$ is a parabola with vertex $(4,-8)$, focus at $(4,0)$, directrix along $y=-16$.
18. Find parametric equations to describe the hyperbola $4(x-1)^{2}-25(y-4)^{2}=100$ SOLN: $x=1+5 \sec t$ and $y=4+2 \tan t$
19. Write the equation for the conic section described by $\begin{aligned} & y=1+8 \sin (2 t) \\ & x=9+72 \cos (2 t)\end{aligned}$ in rectangular form.

$$
\frac{(x-9)^{2}}{5184}+\frac{(y-1)^{2}}{64}=1
$$

