Math 5 - Trigonometry - Chapter 3 - Fair Game Problems

1. If the arclength $t=\frac{29 \pi}{6}$ is traced counterclockwise along the unit circle from $(1,0)$ then
a. What is the reference number for t ?
b. What are the coordinates of the terminal point $P(x, y)$?
2. For arclength $t=\frac{31 \pi}{6}$ extending counterclockwise along the unit circle from $(1,0)$
a. Find the reference number for t.
b. Find the coordinates of the terminal point $P(x, y)$.
c. Illustrate this point's position on a plot of the unit circle.
3. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
a. Verify that the point lies on the unit circle.
b. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos (t)=\frac{5}{13} \approx 0.38$
c. Approximate to the nearest tenth the interval in the first quadrant where $\frac{5}{12} \leq \tan (t) \leq \frac{12}{5}$
4. Recall that a function is even if $f(-x)=f(x)$ and odd if $f(-x)=-f(x)$. Of the six trigonometric functions: $\sin (x)$, $\cos (x), \tan (x), \sec (x), \csc (x)$ and $\cot (x)$

a. Which functions are even?
b. Which functions are odd?
5. Consider the point $\left(\frac{8}{17}, \frac{15}{17}\right)$
a. Verify that the point lies on the unit circle.
b. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos (t)=\frac{8}{17} \approx 0.47$
c. Approximate to the nearest tenth a value of t so that

$$
\tan (t)=\frac{8}{15}
$$

6. Suppose that $\cos (t)=\frac{\sqrt{91}}{100}$ and point and $\sin (t)<0$. Find $\sin (t), \tan (t), \sec (t), \csc (t)$ and $\cot (t)$.
7. Write $\sec (t)$ in terms of $\tan (t)$, assuming the terminal point for t is in quadrant III.
8. Find the amplitude, period and phase shift of $y=5+5 \sin \left(20 \pi\left(x-\frac{1}{50}\right)\right)$, construct a table of values and graph one period of the function, clearly showing the position of key points.
9. Find an equation for the sinusoid whose graph is shown:
a.

b.

10. Consider the function $f(x)=\tan \left(\frac{\pi}{2} x\right)$.
a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
b. Find the x-coordinates where $y=0$ and where $y= \pm 1$.
c. Carefully construct a graph of the function showing how it passes through the points where $y=-1, y=0, y=1$ and how it approaches the vertical asymptotes.
11. Consider the function $f(x)=\tan \left(\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right)$.
a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
b. Find the x-coordinates where $y=0$ and where $y= \pm 1$.
c. Carefully construct a graph of the function showing how it passes through the points where $y=-1, y=0, y=1$ and how it approaches the vertical asymptotes.
12. Suppose $\cos t=9 / 28$ and t is in the first quadrant. Find the following:
a. $\quad \cos (t+\pi)$
b. $\quad \cos \left(t+\frac{\pi}{2}\right)$
c. $\quad \cos \left(\frac{\pi}{2}-t\right)$
13. Suppose $\sin t=16 / 65$ and t is in the first quadrant. Find the following:
a. $\quad \sin (t+\pi)$
b. $\quad \sin \left(t+\frac{\pi}{2}\right)$
c. $\quad \sin \left(\frac{\pi}{2}-t\right)$
14. Complete the table of values for $f(t)=\cos (\pi t)+2 \sin (\pi t)$, plot the points and sketch a graph.

t	0	$1 / 6$	$1 / 4$	$1 / 3$	$1 / 2$	$2 / 3$	$3 / 4$	$5 / 6$	1
$\cos (\pi t)$									
$2 \sin (\pi t)$									
$f(t)$									

15. The Millennium Wheel rotates once every 30 minutes. Its highest point is about 135 meters above the ground and the lowest point is about 5 meters above the ground. Write a function that gives the height of a rider t minutes after boarding the Millennium Wheel.

Chapter 3 - Fair Game Problem Solutions

1. For arclength $t=\frac{29 \pi}{6}$ traced counterclockwise along the unit circle from $(1,0)$
a. Find the reference number for t.

SOLN: $t=\frac{29 \pi}{6}=\frac{(12+12+5) \pi}{6}=2 \pi+2 \pi+\frac{5 \pi}{6}$ so the reference number is $\frac{\pi}{6}$.
b. What are the coordinates of the terminal point $P(x, y)$?
SOLN: Since this point is in the $2^{\text {nd }}$ quadrant, x is negative, but $y>0 . x=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}$ and $y=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$.
c. Illustrate this point's position on a plot of the unit circle.
ANS: The point $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ is shown

2. For arclength $t=\frac{31 \pi}{6}$ extending counterclockwise along the unit circle from $(1,0)$
d. Find the reference number for t.

ANS:
$t=\frac{31 \pi}{6}=\frac{(12+12+6+1) \pi}{6}=2 \pi+2 \pi+\pi+\frac{\pi}{6}$
so the reference number is $\frac{\pi}{6}$.
e. Find the coordinates of the terminal point $P(x, y)$.
ANS: Since this point is in the third quadrant, both x and y are negative and so

$$
\begin{aligned}
& x=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2} \text { and } \\
& y=-\sin \left(\frac{\pi}{6}\right)=-\frac{1}{2}
\end{aligned}
$$

f. Illustrate this point's position on a plot of the unit circle.
ANS: The point $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
3. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
a. Verify that the point lies on the unit circle.

ANS: $\left(\frac{5}{13}\right)^{2}+\left(\frac{12}{13}\right)^{2}=\frac{25}{169}+\frac{144}{169}=\frac{169}{169}=1$
b. Use the diagram at right to approximate to the nearest tenth a value of t so that
$\cos (t)=\frac{5}{13} \approx 0.38$
ANS: A vertical segment is drawn from 0.38 on the x-axis intersects the circle at t between 1.1
 and 1.2: closer to $t=1.2$. Indeed, $\arccos (5 / 13)$ is approximately 1.176
c. Approximate to the nearest tenth the interval in the first quadrant where $\frac{5}{12} \leq \tan (t) \leq \frac{12}{5}$

ANS: If $\cos (t)=5 / 13$ and $\sin (t)=12 / 13$, then $\tan (t)=12 / 5$. Since $\cot (t)=\cos (t) / \sin (t)=5 / 12$ and $\tan (\pi / 2-t)=\cot (t)$. So choose $t=1.6-1.2=0.4$ so that the approximate t interval we seek is t between 0.4 and 1.2.
4. Recall that a function is even if $f(-x)=f(x)$ and a function is odd if $f(-x)=-f(x)$. Of the six trigonometric functions, which are even and which are odd?
SOLN: Only $\cos (t)$ and $\sec (t)$ are even. The other four are odd.
5. Consider the point $\left(\frac{8}{17}, \frac{15}{17}\right)$
d. Verify that the point lies on the unit circle.

ANS: $\left(\frac{8}{17}\right)^{2}+\left(\frac{15}{17}\right)^{2}=\frac{64}{289}+\frac{225}{289}=\frac{289}{289}=1$
e. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos (t)=\frac{8}{17} \approx 0.47$
ANS: A vertical segment is drawn from 0.47 on the x-axis intersects the circle at t near 1.1

f. Approximate to the nearest tenth a value of t so that $\tan (t)=\frac{8}{15}$

ANS: Since $\cot (t)=\cos (t) / \sin (t)=8 / 15$ and $\tan (\pi / 2-t)=\cot (t)$. So choose $t=1.6-1.1=0.5$
6.
7. Suppose that $\cos (t)=\frac{\sqrt{91}}{100}$ and point and $\sin (t)<0$.

Find $\sin (t), \tan (t), \sec (t), \csc (t)$ and $\cot (t)$.
ANS: $\sin (t)=-\sqrt{1-\cos ^{2} t}=-\sqrt{1-\left(\frac{\sqrt{91}}{100}\right)^{2}}=-\sqrt{1-\frac{91}{10000}}=-\sqrt{\frac{10000-91}{10000}}=-\sqrt{\frac{9909}{10000}}=-\frac{3 \sqrt{1101}}{100}$ $\tan (t)=-\frac{3 \sqrt{1101}}{\sqrt{91}}=-\frac{3 \sqrt{100191}}{91} ; \sec (t)=\frac{100 \sqrt{91}}{91} ; \csc (t)=-\frac{100 \sqrt{1101}}{3303} ; \cot (t)=-\frac{\sqrt{100191}}{3303}$
8. Write $\sec (t)$ in terms of $\tan (t)$, assuming the terminal point for t is in quadrant III. ANS: Starting with $\cos ^{2} t+\sin ^{2} t=1$, divide through by $\cos ^{2} t$ to obtain $1+\tan ^{2} t=\sec ^{2} t$. Since $\sec (t)$ is negative in quadrant III, $\sec t=-\sqrt{1+\tan ^{2} t}$
a. Find the amplitude, period and phase shift of $y=5+5 \sin \left(20 \pi\left(x-\frac{1}{50}\right)\right)$, construct a table of values and graph one period of the function, clearly showing the position of key points.

ANS: The amplitude is 5 , the period is $1 / 10$ and the phase angle is $1 / 50$.
Graph is shown below. The starting point and endpoint are $\left(\frac{1}{50}, 5\right)$ and $\left(\frac{3}{25}, 5\right)$. The halfway point is $\left(\frac{7}{100}, 5\right)$ while the peak and trough are, respectively, $\left(\frac{9}{200}, 10\right)$ and $\left(\frac{19}{200}, 0\right)$.

9. Find an equation for the sinusoid whose graph is shown:
a. ANS: The lowest point is at $y=7$ and the highest point is at 23 so the line of equilibrium is at the average of these: $y=(7+23) / 2=15$. and the amplitude is $(23-7) / 2=8$.

The two peaks shown in the graph here are where $x=$ 0.5 and $x=2.5$, so the period is $2.5-0.5=2$.

Thus an equation for the sinusoid is
$y=15+8 \sin (\pi x)$.
b. $y=3+\sin \left(\pi\left(x+\frac{3}{4}\right)\right)$

10. Consider the function $f(x)=\tan \left(\frac{\pi}{2} x\right)$.
a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.

ANS: We want the input to the tangent to be $\pm \frac{\pi}{2}$, that is $\frac{\pi}{2} x= \pm \frac{\pi}{2} \Leftrightarrow x= \pm 1 \Leftrightarrow x=-1$ or 1
b. Find x-coords where $y=0$ and $y= \pm 1$.

SOLN: If x is any even integer then $f(2 k)$ $=\tan (k \pi)=0$, which is true for any integer value for k.

Also We want to find where the input to the tangent function is equal to $\pm \frac{\pi}{4}$, that is $\frac{\pi}{2} x= \pm \frac{\pi}{4} \Leftrightarrow x= \pm \frac{1}{2}$

c. The pattern of even integer $x=2 k$ intercepts and points: $(2 k-1 / 2,-1)$ and $(2 k+1 / 2,1)$ is evident in the graph. Also note that $x=2 k+1$ are vertical asymptotes for $k \in \mathbb{Z}$
11. Consider the function $f(x)=\tan \left(\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right)$.
c. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.

ANS: We want the input to the tangent to be $\pm \frac{\pi}{2}$, that is
$\frac{\pi}{2}\left(x-\frac{1}{2}\right)= \pm \frac{\pi}{2} \Leftrightarrow x-\frac{1}{2}= \pm 1 \Leftrightarrow x=\frac{1}{2} \pm 1=-\frac{1}{2}$ or $\frac{3}{2}$
d. Find x-coords where $y=0$ and $y= \pm 1$.

ANS: We want to find where the input to the tangent function is equal to $\pm \frac{\pi}{4}$, that is

$$
\begin{aligned}
\frac{\pi}{2}\left(x-\frac{1}{2}\right) & = \pm \frac{\pi}{4} \Leftrightarrow x-\frac{1}{2}= \pm \frac{1}{2} \\
& \Leftrightarrow x=0 \text { or } x=1
\end{aligned}
$$

e. Graph of the function showing how it passes through the points where $y=-1, y=0, y=1$ and how it approaches the vertical asymptotes.

12. Suppose $\sin t=9 / 28$ and t is in the first quadrant. Find the following:
a. $\quad \cos (t+\pi)=-\frac{9}{28}$
b. $\quad \cos \left(t+\frac{\pi}{2}\right)=\sin (t)=\sqrt{1-\left(\frac{9}{28}\right)^{2}}=\sqrt{1-\frac{81}{784}}=\sqrt{\frac{703 .}{784}}=\frac{\sqrt{703 .}}{28}$

Note that $703=19 * 37$ is not prime but is square free.
c. $\quad \cos \left(\frac{\pi}{2}-t\right)=\sin (t)=\frac{\sqrt{703}}{28}$

13. Suppose $\sin t=16 / 65$ and t is in the first quadrant. Find the following:
d. $\quad \sin (t+\pi)=-\frac{16}{65}$
e. $\sin \left(t+\frac{\pi}{2}\right)=-\cos (t)=-\sqrt{1-\left(\frac{16}{65}\right)^{2}}=-\sqrt{1-\frac{256}{4225}}=-\sqrt{\frac{3969}{4225}}=\frac{63}{65}$
f. $\quad \sin \left(\frac{\pi}{2}-t\right)=\frac{63}{65}$

14. Complete the table of values for $f(t)=\cos (\pi t)+2 \sin (\pi t)$, plot the points and sketch a graph.

t	0	$1 / 6$	$1 / 4$	$1 / 3$	$1 / 2$	$2 / 3$	$3 / 4$	$5 / 6$	1
$\cos (\pi t)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$2 \sin (\pi t)$	0	1	$\sqrt{2}$	$\sqrt{3}$	2	$\sqrt{3}$	$\sqrt{2}$	1	0
$f(t)$	1	$1+\frac{\sqrt{3}}{2}$	$\frac{3 \sqrt{2}}{2}$	$\frac{1}{2}+\sqrt{3}$	2	$-\frac{1}{2}+\sqrt{3}$	$\frac{\sqrt{2}}{2}$	$1-\frac{\sqrt{3}}{2}$	-1

15. The Millennium Wheel rotates once every 30 minutes. Its highest point is about 135 meters above the ground and the lowest point is about 5 meters above the ground. Write a function that gives
the height of a rider t minutes after boarding the Millennium Wheel.
ANS: $h(t)=70-65 \cos (\pi t / 15)$
