Math 5 – Trigonometry – Chapter 3 – Fair Game Problems

- 1. If the arclength $t = \frac{29\pi}{6}$ is traced counterclockwise along the unit circle from (1,0) then
 - a. What is the reference number for *t* ?
 - b. What are the coordinates of the terminal point P(x,y)?
- 2. For arclength $t = \frac{31\pi}{6}$ extending counterclockwise along the unit circle from (1,0)
 - a. Find the reference number for *t*.
 - b. Find the coordinates of the terminal point P(x,y).
 - c. Illustrate this point's position on a plot of the unit circle.
- 3. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
 - a. Verify that the point lies on the unit circle.
 - b. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos(t) = \frac{5}{13} \approx 0.38$
 - c. Approximate to the nearest tenth the interval in the first quadrant where $\frac{5}{12} \le \tan(t) \le \frac{12}{5}$
- 4. Recall that a function is even if f(-x) = f(x) and odd if
 - f(-x) = -f(x). Of the six trigonometric functions: sin(x), cos(x), tan(x), sec(x), csc(x) and cot(x)
 - a. Which functions are even?
 - b. Which functions are odd?
- 5. Consider the point $\left(\frac{8}{17}, \frac{15}{17}\right)$
 - a. Verify that the point lies on the unit circle.
 - b. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos(t) = \frac{8}{17} \approx 0.47$
 - c. Approximate to the nearest tenth a value of t so that $\tan(t) = \frac{8}{15}$

6. Suppose that $\cos(t) = \frac{\sqrt{91}}{100}$ and point and $\sin(t) < 0$. Find $\sin(t), \tan(t), \sec(t), \csc(t)$ and $\cot(t)$.

- 7. Write sec(t) in terms of tan(t), assuming the terminal point for t is in quadrant III.
- 8. Find the amplitude, period and phase shift of $y = 5 + 5\sin\left(20\pi\left(x \frac{1}{50}\right)\right)$, construct a table of values and graph one period of the function, clearly showing the position of key points.
- 9. Find an equation for the sinusoid whose graph is shown:
 - a.

- a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
- b. Find the *x*-coordinates where y = 0 and where $y = \pm 1$.
- c. Carefully construct a graph of the function showing how it passes through the points where y = -1, y = 0, y = 1 and how it approaches the vertical asymptotes.

11. Consider the function $f(x) = \tan\left(\frac{\pi}{2}\left(x - \frac{1}{2}\right)\right)$.

- a. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.
- b. Find the *x*-coordinates where y = 0 and where $y = \pm 1$.
- c. Carefully construct a graph of the function showing how it passes through the points where y = -1, y = 0, y = 1 and how it approaches the vertical asymptotes.
- 12. Suppose $\cos t = 9/28$ and *t* is in the first quadrant. Find the following:

a.
$$\cos(t+\pi)$$
 b. $\cos\left(t+\frac{\pi}{2}\right)$ c. $\cos\left(\frac{\pi}{2}-t\right)$

13. Suppose *sin t* = 16/65 and *t* is in the first quadrant. Find the following:

a.
$$\sin(t+\pi)$$
 b. $\sin\left(t+\frac{\pi}{2}\right)$ c. $\sin\left(\frac{\pi}{2}-t\right)$

14. Complete the table of values for $f(t) = \cos(\pi t) + 2\sin(\pi t)$, plot the points and sketch a graph.

t	0	1/6	1/4	1/3	1/2	2/3	3/4	5/6	1
$\cos(\pi t)$									
$2\sin(\pi t)$									
f(t)									

15. The Millennium Wheel rotates once every 30 minutes. Its highest point is about 135 meters above the ground and the lowest point is about 5 meters above the ground. Write a function that gives the height of a rider *t* minutes after boarding the Millennium Wheel.

Chapter 3 – Fair Game Problem Solutions

- 1. For arclength $t = \frac{29\pi}{6}$ traced counterclockwise along the unit circle from (1,0)
 - a. Find the reference number for *t*.

SOLN:
$$t = \frac{29\pi}{6} = \frac{(12+12+5)\pi}{6} = 2\pi + 2\pi + \frac{5\pi}{6}$$
 so the reference number is $\frac{\pi}{6}$.
b. What are the coordinates of the terminal point $P(x,y)$?
SOLN: Since this point is in the 2nd quadrant, x
is negative, but $y > 0$. $x = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$ and
 $y = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$.
c. Illustrate this point's position on a plot of the unit circle.
ANS: The point $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ is shown

- 2. For arclength $t = \frac{31\pi}{6}$ extending counterclockwise
 - along the unit circle from (1,0)d. Find the reference number for *t*.
 - ANS: $t = \frac{31\pi}{6} = \frac{(12+12+6+1)\pi}{6} = 2\pi + 2\pi + \pi + \frac{\pi}{6}$

so the reference number is $\frac{\pi}{6}$.

e. Find the coordinates of the terminal point P(x,y).

ANS: Since this point is in the third quadrant, both *x* and *y* are negative and so

$$x = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} \text{ and}$$
$$y = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}.$$

f. Illustrate this point's position on a plot of the unit circle.

ANS: The point
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

- 3. Consider the point $\left(\frac{5}{13}, \frac{12}{13}\right)$
- a. Verify that the point lies on the unit circle.

ANS:
$$\left(\frac{5}{13}\right)^2 + \left(\frac{12}{13}\right)^2 = \frac{25}{169} + \frac{144}{169} = \frac{169}{169} = 1$$

b. Use the diagram at right to approximate to the nearest tenth a value of t so that

$$\cos(t) = \frac{5}{13} \approx 0.38$$

ANS: A vertical segment is drawn from 0.38 on the *x*-axis intersects the circle at *t* between 1.1 and 1.2: closer to t = 1.2. Indeed, $\arccos(5/13)$ is approximately 1.176

c. Approximate to the nearest tenth the interval in the first quadrant where $\frac{5}{12} \le \tan(t) \le \frac{12}{5}$

ANS: If $\cos(t) = 5/13$ and $\sin(t) = 12/13$, then $\tan(t) = 12/5$. Since $\cot(t) = \cos(t)/\sin(t) = 5/12$ and $\tan(\pi/2 - t) = \cot(t)$. So choose t = 1.6 - 1.2 = 0.4 so that the approximate *t* interval we seek is *t* between 0.4 and 1.2.

4. Recall that a function is even if f(-x) = f(x) and a function is odd if f(-x) = -f(x). Of the six trigonometric functions, which are even and which are odd? SOLN: Only $\cos(t)$ and $\sec(t)$ are even. The other four are odd.

- 5. Consider the point $\left(\frac{8}{17}, \frac{15}{17}\right)$
 - d. Verify that the point lies on the unit circle.

ANS:
$$\left(\frac{8}{17}\right)^2 + \left(\frac{15}{17}\right)^2 = \frac{64}{289} + \frac{225}{289} = \frac{289}{289} = 1$$

e. Use the diagram at right to approximate to the nearest tenth a value of t so that $\cos(t) = \frac{8}{17} \approx 0.47$

ANS: A vertical segment is drawn from 0.47 on the x-axis intersects the circle at t near 1.1

f. Approximate to the nearest tenth a value of t so that $tan(t) = \frac{8}{15}$

ANS: Since $\cot(t) = \cos(t)/\sin(t) = 8/15$ and $\tan(\pi/2 - t) = \cot(t)$. So choose t = 1.6 - 1.1 = 0.5

- 6.
- 7. Suppose that $\cos(t) = \frac{\sqrt{91}}{100}$ and point and $\sin(t) < 0$. Find $\sin(t)$, $\tan(t)$, $\sec(t)$, $\csc(t)$ and $\cot(t)$.

ANS:
$$\sin(t) = -\sqrt{1 - \cos^2 t} = -\sqrt{1 - \left(\frac{\sqrt{91}}{100}\right)^2} = -\sqrt{1 - \frac{91}{10000}} = -\sqrt{\frac{10000 - 91}{10000}} = -\sqrt{\frac{9909}{10000}} = -\frac{3\sqrt{1101}}{100}$$

 $\tan(t) = -\frac{3\sqrt{1101}}{\sqrt{91}} = -\frac{3\sqrt{100191}}{91}; \ \sec(t) = \frac{100\sqrt{91}}{91}; \ \csc(t) = -\frac{100\sqrt{1101}}{3303}; \ \cot(t) = -\frac{\sqrt{100191}}{3303}$

- 8. Write $\sec(t)$ in terms of $\tan(t)$, assuming the terminal point for *t* is in quadrant III. ANS: Starting with $\cos^2 t + \sin^2 t = 1$, divide through by $\cos^2 t$ to obtain $1 + \tan^2 t = \sec^2 t$. Since $\sec(t)$ is negative in quadrant III, $\sec t = -\sqrt{1 + \tan^2 t}$
- a. Find the amplitude, period and phase shift of $y = 5 + 5\sin\left(20\pi\left(x \frac{1}{50}\right)\right)$, construct a table of values and graph one period of the function, clearly showing the position of key points.

ANS: The amplitude is 5, the period is 1/10 and the phase angle is 1/50. Graph is shown below. The starting point and endpoint are $\left(\frac{1}{50}, 5\right)$ and $\left(\frac{3}{25}, 5\right)$. The halfway point is $\left(\frac{7}{100}, 5\right)$ while the peak and trough are, respectively, $\left(\frac{9}{200}, 10\right)$ and $\left(\frac{19}{200}, 0\right)$.

is evident in the graph. Also note that x = 2k + 1 are vertical asymptotes for $k \in \mathbb{Z}$

- 11. Consider the function $f(x) = \tan\left(\frac{\pi}{2}\left(x \frac{1}{2}\right)\right)$.
 - c. Find the equations for two adjacent vertical asymptotes and sketch them in with dashed lines.

ANS: We want the input to the tangent to be $\pm \frac{\pi}{2}$, that is $\frac{\pi}{2}\left(x-\frac{1}{2}\right) = \pm \frac{\pi}{2} \Leftrightarrow x-\frac{1}{2} = \pm 1 \Leftrightarrow \boxed{x=\frac{1}{2}\pm 1=-\frac{1}{2} \text{ or } \frac{3}{2}}$ d. Find *x*-coords where y = 0 and $y = \pm 1$. ANS: We want to find where the input to the

tangent function is equal to $\pm \frac{\pi}{4}$, that is $\frac{\pi}{2}\left(x-\frac{1}{2}\right) = \pm \frac{\pi}{4} \Leftrightarrow x-\frac{1}{2} = \pm \frac{1}{2}$

$$\Leftrightarrow x = 0 \text{ or } x = 1$$

e. Graph of the function showing how it passes through the points where y = -1, y = 0, y = 1 and how it approaches the vertical asymptotes.

- 12. Suppose sin t = 9/28 and t is in the first quadrant. Find the following:
 - a. $\cos(t+\pi) = -\frac{9}{28}$ b. $\cos\left(t+\frac{\pi}{2}\right) = \sin(t) = \sqrt{1-\left(\frac{9}{28}\right)^2} = \sqrt{1-\frac{81}{784}} = \sqrt{\frac{703}{784}} = \frac{\sqrt{703}}{28}$

Note that 703 = 19*37 is not prime but is square free.

13. Suppose *sin t* = 16/65 and *t* is in the first quadrant. Find the following:

14. Complete the table of values for $f(t) = \cos(\pi t) + 2\sin(\pi t)$, plot the points and sketch a graph.

15. The Millennium Wheel rotates once every 30 minutes. Its highest point is about 135 meters above the ground and the lowest point is about 5 meters above the ground. Write a function that gives

the height of a rider t minutes after boarding the Millennium Wheel. ANS: $h(t) = 70 - 65 \cos(\pi t / 15)$