Math 5 - Final Exam - Fall 2010

Name

Instructions: Write all responses on these pages or attach additional pages, as needed.

- 1. In the figure, if $m \angle A = 30^{\circ}$ and CD = 8 m, find AB.
- 2. Consider the parabola described by the function $f(x) = 6 6x x^2$.
 - a. Find the vertex of the parabola and write the function in the vertex form: $y = a(x h)^2 + k$
 - b. Find the *x*-intercepts of the parabola.
 - c. Find where the parabola intersects the line y = -2x + 1
 - d. Sketch a graph of the parabola $f(x) = 6 6x x^2$ and the

line y = -2x + 1 together showing where they intersect.

- 3. If $\tan t = \frac{4}{3}$ and *t* is in QIII, then find the following:
 - a. $\csc(t) + \sec(t)$ b. $\sin\left(\frac{\pi}{2} t\right) + \cos\left(\frac{\pi}{2} t\right)$
- 4. A point *P* moving in simple harmonic motion completes 8 cycles every second. If the amplitude of the motion is 50 cm, find an equation that describes the motion of *P* as a function of time. Assume the point *P* is at its maximum displacement when t = 0.
- 5. Consider the simple harmonic oscillator whose function is $x(t) = -\cos\left(\frac{\pi}{2}t + \frac{\pi}{6}\right)$.
 - a. Find the amplitude, period and phase shift of oscillation.
 - b. Construct a graph showing the coordinates of at least 5 key points of the function.
- 6. A potter's wheel with radius 9 cm spins at 180 rotations per minute. Find
 - a. The angular speed of the wheel in radians per second.
 - b. The angular speed of the wheel in degrees per minute.
 - c. The linear speed of a point on the rim of the wheel in meters per second.
- 7. A bird observes the angles of depression to two rodents on the ground to be 45° and 30°, as shown. If the bird is flying at an elevation of 100 meters, find the distance between the rodents.
- 8. Consider the triangle with sides of length 8 meters and 14 meters and included angle 35°.
 - a. Solve the triangle. That is, find the length of the unknown side and find the degree measures of the other two interior angles
 - b. Find the area of the triangle.

9. Consider the ellipse described by $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the hyperbola described by $x^2 - y^2 = 1$

- a. Sketch a graph showing the ellipse and the hyperbola together.
- b. What are the coordinates of the points where the two conic sections intersect?
- 10. Consider the ellipse parameterized by $x(t) = 1+2\sin(t)$ and $y(t) = 2 + 3\cos(t)$
 - a. Write the standard form for the equation of this ellipse.
 - b. Complete the table and use the values to sketch a graph for the part of ellipse where $0 \le t \le \pi$

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
x					
y					

Math 5 – Final Exam Solutions I – Fall 2010

1. In the figure, if $m \angle A = 30^{\circ}$ and CD = 8 m, find AB.

SOLN: In each right triangle here, it is easy to see that the acute angles are complementary and so all three triangles are $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. Thus AC = 16 and $AB = 32/\sqrt{3} = 32\sqrt{3}/3$.

- 2. Consider the parabola described by the function $f(x) = 6 6x x^2$.
 - a. Find the vertex of the parabola and write the function in the vertex form: $y = a(x-h)^2 + k$ SOLN: $f(x) = -x^2 - 6x + 6 = -(x+3)^2 + 15$ so the vertex is at (-3,15).
 - a. Find the *x*-intercepts of the parabola. SOLN: It's easiest to solve the vertex form equation, from which it's readily clear that $(x+3)^2 = 15 \iff x = -3 \pm \sqrt{15}$
 - b. Find where the parabola intersects the line y = -2x + 1SOLN: $-x^2 - 6x + 6 = -2x + 1 \Leftrightarrow x^2 + 4x = 5 \Leftrightarrow (x+2)^2 = 9 \Leftrightarrow x = -2 \pm 3$ so the parabola and the line intersect at $(-2 \pm 3, 5 \mp 6) = (-5, 11)$ or (1, -1)
 - c. Sketch a graph of the parabola $f(x) = 6 6x x^2$ and the line y = -2x + 1 together showing where they intersect.

3. If $\tan t = \frac{4}{3}$ and *t* is in QIII, then find the following:

a. $\csc(t) + \sec(t)$

SOLN: This is the 3-4-5 triple in QIII, so sin(t) = -4/5 and cos(t) = -3/5 whence

$$\csc(t) + \sec(t) = -\frac{5}{4} - \frac{5}{3} = -\frac{35}{12}$$

b.
$$\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)$$

SOLN:
$$\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right) = \cos(t) + \sin(t) = -\frac{4}{5} - \frac{3}{5} = -\frac{7}{5}$$

4. A point *P* moving in simple harmonic motion completes 8 cycles every second. If the amplitude of the motion is 50 cm, find an equation that describes the motion of *P* as a function of time. Assume the point *P* is at its maximum displacement when t = 0.

SOLN: A good simple harmonic oscillator model for this set up is $P(t) = A\sin(\omega t)$. 8 Hz means $\omega = 2\pi$ *8 and A = 50 so $P(t) = 50\sin(16\pi t)$ does the job.

- 5. Consider the simple harmonic oscillator whose function is $x(t) = -\cos\left(\frac{\pi}{2}t + \frac{\pi}{6}\right)$.
 - a. Find the amplitude, period and phase shift of oscillation. SOLN: The amplitude = 1, period = 4 and phase shift = -1/3.
 - b. Construct a graph showing the coordinates of at least 5 key points of the function.

SOLN: Note that this curve is also described by $x(t) = \sin\left(\frac{\pi}{2}t - \frac{\pi}{3}\right)$

- 6. A potter's wheel with radius 9 cm spins at 180 rotations per minute. Find
 - a. The angular speed of the wheel in radians per second.

SOLN:
$$\frac{180 \text{rot}}{\text{min}} \times \frac{2\pi \text{rad}}{\text{rot}} \times \frac{1 \text{min}}{60 \text{ sec}} = \frac{6\pi \text{rad}}{\text{sec}}$$

b. The angular speed of the wheel in degrees per minute.

SOLN:
$$\frac{180 \text{rot}}{\text{min}} \times \frac{360^{\circ}}{\text{rot}} = \left| \frac{64800^{\circ}}{\text{min}} \right|$$

c. The linear speed of a point on the rim of the wheel in meters per second.

$$\frac{6\pi \text{rad}}{\text{sec}} \times 9\text{cm} \times \frac{1\text{m}}{100\text{cm}} = \frac{27\pi m}{50 \text{ sec}} \approx 1.696 \text{ m/s}$$

7. A bird observes the angles of depression to two rodents on the ground to be 45° and 30°, as shown. If the bird is flying at an elevation of 100 meters, find the distance between the rodents.

SOLN: Let d_1 = the distance from the farther rodent to the point directly below the bird and let d_2 = the distance from the nearer rodent to the

point directly below the bird. Then $\tan 45^\circ = \frac{100}{d_2} \Leftrightarrow d_2 = \frac{100}{\tan 45^\circ} = 100$

and
$$\tan 30^\circ = \frac{100}{d_1} \Leftrightarrow d_2 = \frac{100}{\tan 30^\circ} = 100\sqrt{3}$$
 so the distance between the rodents is $d_1 - d_2 = 100\sqrt{3} - 100 = 100(\sqrt{3} - 1) \approx 73.21$ meters

- 8. Consider the triangle with sides of length 8 meters and 14 meters and included angle 35°.
 - a. Solve the triangle. That is, find the length of the unknown side and find the degree measures of the other two interior angles.

30°

SOLN: By the law of cosines, the side opposite the 35° angle is

$$\sqrt{8^2 + 14^2 - 2(8)(14)\cos 35^\circ} = \sqrt{260 - 224\cos 35^\circ} = 2\sqrt{65 - 56\cos 35^\circ} \approx 8.7470$$

Now the law of sines can be used to reveal the angle opposite side, 8, say:

$$\frac{\sin\theta}{8} \approx \frac{\sin 35^{\circ}}{8.747} \Leftrightarrow \theta \approx \sin^{-1} \left(\frac{8\sin 35^{\circ}}{8.747} \right) \approx 31.64^{\circ} \text{ so the third angle is } 113.36^{\circ}$$

$$\frac{2\sqrt{65 - 56\cos 35^{\circ}}}{8.7470}$$

$$\frac{35^{\circ}}{14}$$

b. Find the area of the triangle. SOLN: The simplest formula here is $7(8)\sin 35^\circ = 56\sin 35^\circ \approx 32.12 \text{ m}^2$.

9. Consider the ellipse described by $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the hyperbola described by $x^2 - y^2 = 1$

a. Sketch a graph showing the ellipse and the hyperbola together.

b. What are the coordinates of the points where the two conic sections intersect?

SOLN: Substitue $y^2 = x^2 - 1$ from the hyperbola into the equation for the ellipse: $\frac{x^2}{9} + \frac{x^2 - 1}{4} = 1 \Leftrightarrow 4x^2 + 9x^2 - 9 = 36 \Leftrightarrow 13x^2 = 45 \Leftrightarrow \boxed{x = \pm 3\sqrt{\frac{5}{13}} = \pm \frac{3\sqrt{65}}{13} \approx \pm 1.86}$ Thus $y^2 = x^2 - 1 = 32/13$ so that $y = \pm \sqrt{\frac{32}{13}} = \pm \frac{4\sqrt{26}}{13} \approx \pm 1.57$

- 10. Consider the ellipse parameterized by $x(t) = 1+2\sin(t)$ and $y(t) = 2 + 3\cos(t)$
 - a. Write the standard form for the equation of this ellipse.

SOLN:
$$\left(\frac{x-1}{2}\right)^2 + \left(\frac{y-2}{3}\right)^2 = 1$$

b. Complete the table and use the values to sketch a graph for the part of ellipse where $0 \le t \le \pi$

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
x	1	$1+\sqrt{2} \approx 2.414$	3	$1+\sqrt{2} \approx 2.414$	1
у	5	$2 + \frac{3\sqrt{2}}{2} \approx 4.121$	2	$2 - \frac{3\sqrt{2}}{2} \approx -0.121$	-1

