Math 5 – Trigonometry – Spring '11 – Chapter 2 Test Name______ Instructions: Show all work for credit. Write all responses on separate paper. Do not use a calculator.

- 1. Compute and simplify the average rate of change of $f(x) = \frac{1}{x-2}$ over the interval [0, h]. *Hint: Recall that the average rate of change over* [a,b] *is the slope of the line from* [a, f(a)] *to* [b, f(b)].
- 2. Consider the quadratic function $f(x) = 3x^2 6x + 2$
 - a. Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$
 - b. Find the coordinates of the *x*-intercepts.
 - c. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
- 3. Consider the piecewise defined function $f(x) = \begin{cases} x & x < 1 \\ 1 + 2\sqrt{x-1} & \text{if } x \ge 1 \end{cases}$
 - a. Make a table of values and sketch a graph for the function.
 - b. Show that f is one-to-one and find a formula for the inverse function.
- 4. Consider the quadratic $f(x) = -2x^2 + 4x + 3$
 - a. Express the quadratic function in standard form.
 - b. Sketch its graph showing the position of the vertex.
 - c. What sequence of
 - (i) vertical shift,
 - (ii) reflection,
 - (iii) vertical shrink, and
 - (iv) horizontal shift

would be required to transform this function to $y = x^2$?

5. Given the graph of y = f(x) shown at right and the given transformation, tabulate the transformed coordinate values of the key points in the graph. Then plot the given transformation on the paper at right.

		г	·· F ·	0					
	x		-4	-2	0		2		
	f(x)	8	2	0	-	-8		
ć	a. y	=	$f(x \cdot$	-4)+	- 3				
			-	x					
		J	f(x -	-4)+	3				
1	b. y	=	$\frac{3}{2}f($	x+8))				
			X	•					ĺ
			$\frac{3}{2}f(x)$	c+8)					

- 6. The surface area of a sphere is a function of the radius according to $S = f(r) = 4\pi r^2$ and the volume of a sphere is a function of the radius according to $V = g(r) = \frac{4}{3}\pi r^3$. Find a function that gives the surface area, *S*, as a function of the Volume, *V*.
- 7. Suppose $f(x) = \sqrt{x-1}$ and $g(x) = \frac{2}{x}$.
 - a. What is the domain of f?
 - b. What is the range of f?
 - c. What is the domain of *g* ?
 - d. Find a formula for and determine the domain of $(g \circ f)(x)$
 - e. Find a formula for and determine the domain of $(f \circ g)(x)$
- 8. Consider the linear function $f(x) = \frac{1}{3}x 2$
 - a. Find a formula for the inverse function.
 - b. Make a graph for y = f(x) and $y = f^{-1}(x)$ together showing symmetry through the line y = x.

Math 5 – Trigonometry –Spring '11 – Chapter 2 Test Solutions

1. Compute and simplify the average rate of change of $f(x) = \frac{1}{x-2}$ over the interval [0, h]. *Hint: Recall that the average rate of change over* [a,b] *is the slope of the line from* [a, f(a)] *to* [b, f(b)].

$$\frac{f(h) - f(0)}{h} = \frac{\frac{1}{h-2} - \frac{1}{-2}}{h} = \frac{1}{h} \cdot \frac{2 + (h-2)}{2(h-2)} = \frac{1}{h} \cdot \frac{h}{2(h-2)} = \frac{1}{2(x-2)}$$

- 2. Consider the quadratic $f(x) = 3x^2 6x + 2$
 - a. Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$

SOLN: $f(x) = 3x^2 - 6x + 2 = 3(x^2 - 2x) + 2 = 3(x^2 - 2x + 1) + 2 - 3 = 3(x - 1)^2 - 1$

b. Find the coordinates of the *x*-intercepts.

SOLN:
$$y = 0 \Leftrightarrow 3(x-1)^2 - 1 = 0 \Leftrightarrow (x-1)^2 = \frac{1}{3} \Leftrightarrow x-1 = \frac{\pm\sqrt{3}}{3} \Leftrightarrow x = 1 \pm \frac{\sqrt{3}}{3}$$

c. Express the quadratic function in factored form: $y = a(x - r_1)(x - r_2)$

SOLN:
$$y = 3\left(x - \left(1 - \frac{\sqrt{3}}{3}\right)\right)\left(x - \left(1 + \frac{\sqrt{3}}{3}\right)\right) = 3\left(x - 1 + \frac{\sqrt{3}}{3}\right)\left(x - 1 - \frac{\sqrt{3}}{3}\right)$$

d. Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
SOLN: A table of values is always helpful:

x	$\left -\frac{1}{2} \right $	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$
y	$\frac{23}{4}$	2	$-\frac{1}{4}$	-1	$-\frac{1}{4}$	2	$\frac{23}{4}$

3. Consider the piecewise defined function $f(x) = \begin{cases} x & x < 1 \\ 1 + 2\sqrt{x-1} & \text{if } x \ge 1 \end{cases}$

a. Make a table of values and sketch a graph for the function.

b. Show that *f* is one-to-one and find a formula for the inverse function. SOLN: Since I(x) = x is the identity function, it is its own inverse. For the other part, solving for *x* gives $x = 1+(y-1)^2/4$ so

$$f^{-1}(x) = \begin{cases} x & \text{if } x < 1\\ \frac{1}{4}(x-1)^2 + 1 & \text{if } x \ge 1 \end{cases}$$

- 4. Consider the quadratic $f(x) = -2x^2 + 4x + 3$
 - a. Express the quadratic function in standard form. SOLN: $f(x) = -2(x-1)^2 + 5 \Leftrightarrow y-5 = -2(x-1)^2$
 - b. Sketch its graph showing the position of the vertex. SOLN: (at right)
 - c. What sequence of

(i) vertical shift, SOLN: Shift down 5 by $(y \leftarrow y+5)$ (ii) reflection, SOLN: Reflect across *x*-axis by $(y \leftarrow -y)$ (iii) vertical shrink, SOLN: Shrink vertically by $(y \leftarrow 2y)$ (iv) horizontal shift SOLN: Shift left 5 by $(x \leftarrow x+1)$ In the above order, these transforms lead to the following sequence of equations:

$$\frac{y-5 = -2(x-1)^2}{y} \rightarrow y = -2(x-1)^2 \rightarrow y = 2(x-1)^2$$
$$\rightarrow y = (x-1)^2 \rightarrow y = x^2$$

5. Given the graph of y = f(x) shown at right and the given transformation, tabulate the transformed coordinate values of the key points in the graph. Then plot the given transformation on the paper at right.

		0	-2	-4	x
$ \left \begin{array}{c c} f(x) \\ \end{array} \right 8 \\ \left \begin{array}{c c} 2 \\ \end{array} \right 0 \\ \end{array} $	-8	0	2	8	f(x)

a.
$$y = f(x-4) + 3$$
:

X	0	2	4	6
$y = f\left(x - 4\right) + 3$	11	5	3	-5

b.
$$y = \frac{3}{2}f(x+8)$$
:

x	-12	-10	-8	-6
$y = \frac{3}{2}f(x+8)$	12	3	0	-12

6. The surface area of a sphere is a function of the radius according to $S = f(r) = 4\pi r^2$ and the volume of a sphere is a function of the radius according to $V = g(r) = \frac{4}{3}\pi r^3$. Find a function that gives the surface area, *S*, as a function of the Volume, *V*.

SOLN: The surface area is $V = \frac{4}{3}\pi r^3 \leftarrow r = \left(\frac{3V}{4\pi}\right)^{1/3}$, so $S = f(r) = 4\pi r^2$ $S = 4\pi \left(\frac{3V}{4\pi}\right)^{2/3} = \left(4\pi\right)^{3/3} \left(\frac{9V^2}{16\pi^2}\right)^{1/3} = \left(36\pi V^2\right)^{1/3}$

7. Suppose $f(x) = \sqrt{x-1}$ and $g(x) = \frac{2}{x}$.

- a. Then the domain of f is $[1,\infty)$.
- b. The range of f is $[0,\infty)$.
- c. Then the domain of g is $[-\infty,0) \cup [0,\infty)$.

d.
$$(g \circ f)(x) = \frac{2}{\sqrt{x-1}}$$
 has domain $(1,\infty)$.
e. $(f \circ g)(x) = \sqrt{\frac{2}{x}-1}$ has domain $(0,2]$.

