Math 5 - Trigonometry - Chapter G Test - Spring'11
Name \qquad
Write all responses on separate paper.
Explain your answers in detail for credit.
No calculators.

1. What is the degree measure of angle x in the figure at right? Explain how you know.
2. Draw an isosceles right triangle with hypotenuse $=5 \mathrm{~cm}$. Label the vertices A, B, and C.
Find the perimeter and area of the triangle and simplify.

3. Consider the diagram at right and assume that $\overline{A C} \perp \overline{B C}$ and that $\overline{C D} \perp \overline{A B}$.
a. Prove that $\triangle C A D \sim \triangle B C D$ are similar triangles.
b. If $A C=10$ and $C D=6$, find $B C$

Hint: If you find $A D$ then you'll have the ratios $\frac{\text { hypotenuse }}{\text { short leg }}, \frac{\text { hypotenuse }}{\text { long leg }}, \frac{\text { long leg }}{\text { short leg }}$

4. Draw an equilateral triangle with height $=2 \sqrt{3}$ and label the vertices A, B, and C.

Find the perimeter of the triangle.
5. Given the triangle shown at right, with $A C=A B$ and $\angle E B C=\angle D C B$, show that $\triangle E B A=\triangle D C A$
6. Draw a rhombus with diagonals of length 2 and $2 \sqrt{3}$.
a. What is the perimeter of the rhombus?
b. What is the area of the rhombus?

7. The figure at right is a parallelogram. Find x.

8. Consider the area of region $A B C D$ bounded by concentric arcs $A B=2 \pi \mathrm{~cm}$ and $C D=3 \pi \mathrm{~cm}$ as shown at right.
a. Find the radii, OB and OC.
b. Find the area of the region $A B C D$

Math 5 - Fall '08 - Chapter 1 Test Solutions

1. What is the degree measure of angle x in the figure at right? Explain how you know.
ANS: When the transversal $\overrightarrow{A D}$ crosses the parallels it creates equal corresponding angles, so

$\angle A B C=\angle A D E=90^{\circ}+\angle C D E$
$\Leftrightarrow 10 x=90+5 x-20$
$\Leftrightarrow 5 x=70 \Leftrightarrow x=14^{\circ}$
2. Draw an isosceles right triangle with hypot. $=5 \mathrm{~cm}$. Label the vertices A, B, and C. Find the perimeter and area of the triangle and simplify.
SOLN: Let $x=A C=B C$. Then by Pythagoras'
theorem, $x^{2}+x^{2}=5^{2}$ or $x=\frac{5 \sqrt{2}}{2}$ Thus the
perimeter is $5+5 \sqrt{ } 2 \mathrm{~cm}$ and the area is $25 / 4 \mathrm{~cm}^{2}$.
3. Consider the diagram at right and assume that
$\overline{A B} \perp \overline{A C}$ and that $\overline{A D} \perp \overline{B C}$.
a. Prove that $\triangle C A D \sim \triangle B C D$

ANS: Since $\overline{C D} \perp \overline{A B}, \angle A D C=\angle B D C=90^{\circ}$.
Also, the two acute angles of a right triangle are
complementary, so $\angle A B D+\angle A C D=90^{\circ}$.
Also, $\angle D B C+\angle D C B=\angle A C D+\angle D C B=90^{\circ}$
and thus $\angle D B C=\angle A C D$ (angles
complementary to the same angle are equal.)

So by AA, the $\triangle C A D \sim \triangle B C D$
b. If $A C=10$ and $C D=6$, find $B C$

ANS: Since $\triangle C A D$, we can apply the Pythagorean theorem to find $A D=\sqrt{10^{2}-6^{2}}=\sqrt{64}=8$. Now, since corresponding parts of similar triangles are proportional. Thus $\frac{\text { hypotenuse }}{\text { long leg }}=\frac{10}{8}=\frac{B C}{6} \Leftrightarrow B C=\frac{15}{2}$.
4. Draw an equilateral triangle with height $=2 \sqrt{3}$ and label the vertices A, B, and C. Find the perimeter of the triangle.
ANS: By symmetry, $A D=D B$ and height $C D$ is perpendicular to $A B$ so $A C=A B=2 A D$ and by the
Pythagoras' theorem, $A D^{2}+(2 \sqrt{3})^{2}=A C^{2}=(2 A D)^{2}$
$\Leftrightarrow A D^{2}+12=4 A D^{2} \Leftrightarrow A D=2$ and $A C=4$. Thus the perimeter is 12 .

5. Given the triangle shown at right, with $A C=A B$ and $\angle E B C=\angle D C B$, show that $\triangle E B A=\triangle D C A$ ANS: The base angles of an isosceles triangle are equal, $\angle A B C=\angle A C B$. Together with the reflexive $C B=B C$ and the given $\angle E B C=\angle D C B$, we have by ASA that $\triangle E B C \cong \triangle D C B$. Thus by CPCTC, $C D=B E$. Now differences of equals are equal, so $\angle A C D=\angle A B E$, whence $\triangle E B A=\triangle D C A$ follows by SAS.
6. Draw a rhombus with diagonals of length 2 and $2 \sqrt{3}$.
a. What is the perimeter of the rhombus?

SOLN: Since the diagonals of the rhombus are perpendicular bisectors of one another, we see the interior of the rhombus is composed of 4 congruent $30^{\circ}-60^{\circ}-90^{\circ}$ triangles each with hypotenuse 2 . Thus the perimeter is 8 units.

b. What is the area of the rhombus? Area $=2 \sqrt{3}$ sq. units
7. The figure at right is a parallelogram. Find x.

ANS: These angles are supplementary, so
$5 x-86+9 x=180 \Leftrightarrow 14 x=266 \Leftrightarrow x=19^{\circ}$

8. Consider the area of region $A B C D$ bounded by concentric arcs $A B=2 \pi \mathrm{~cm}$ and $C D=3 \pi \mathrm{~cm}$ as shown at right.
a. Find the radii, OB and OC.

SOLN: Let $R=\mathrm{OC}$ and $r=\mathrm{OB}$. Then

$$
3 \pi=\frac{40}{360}(2 \pi R) \Leftrightarrow R=\frac{27}{2} 2 \pi=\frac{40}{360}(2 \pi r) \Leftrightarrow r=9
$$

b. Find the area of the region $A B C D$

SOLN: Area $=$ big sector - small sector $=$

$$
\frac{40}{360}\left(\pi R^{2}\right)-\frac{40}{360}\left(\pi r^{2}\right)=\frac{\pi}{9}\left(R^{2}-r^{2}\right)=\frac{\pi}{9}(R+r)(R-r)=\frac{\pi}{9}\left(\frac{27}{2}+9\right)\left(\frac{27}{2}-9\right)=\frac{\pi}{9}\left(\frac{45}{2}\right)\left(\frac{9}{2}\right)=\frac{45 \pi}{4}
$$

