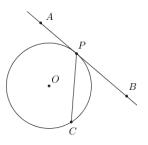

- 1. For each of the following, let the two angles be represented by A and B. Obtain two equations for each case, and then solve the system to find the angles.
 - (a) The angles are adjacent and form an angle measuring 100°. Their difference is 22°.
 Sol'n: A + B = 100 and A = B + 22 Substituting, we have (B + 22) + B = 100 ⇔ 2B = 78 ⇔
 B=39 and so A=61
 - (b) The angles are complementary. One measures 10° more than three times the other. **Sol'n:** A + B = 90 and A = 3B + 10 Substituting, we have $(3B + 10) + B = 90 \Leftrightarrow 4B = 80 \Leftrightarrow$ $\boxed{B=20}$ and so $\boxed{A=70}$
 - (c) The angles are supplementary. One measures 10° more than four times the other. Sol'n: A+B = 180 and A = 4B + 10 Substituting, we have $(4B + 10) + B = 180 \Leftrightarrow 5B = 170 \Leftrightarrow \boxed{B=34}$ and so $\boxed{A=146}$
- 2. Answer each of the following by stating the basic angle theorem needed.
 - (a) Why does m∠1 = m∠2?
 Sol'n: The angles have the same measure because vertical angles are congruent.
 - (b) Why does m∠DBC = m∠ECB?
 Sol'n: Those are both straight angles and all straight angles have a measure of 180°
 - (c) If m∠3 = m∠4, why does m∠5 = m∠6?
 Sol'n: Angles supplementary to congruent angles are congruent.



Prove:

 $\triangle ABE \cong \triangle CBD$

1. $\overline{BD} \cong \overline{BE}$ 1. If two angles of a \triangle are \cong then the sides opposite are \cong 2. $\overline{BD} + \overline{DA} = \overline{BA}$ 2.3. $\overline{BE} + \overline{EC} = \overline{BC}$ 3. The whole is the sum of its parts.4. $\overline{BA} = \overline{BC}$.4. Things equal to equal things are equal to eachother.5. $\angle B \cong \angle B$ 5. Reflexive postulate for congruence.6. $\triangle ABE \cong \triangle CBD$ 6. SAS	Statement	Reason
3. $\overline{BE} + \overline{EC} = \overline{BC}$ 3. The whole is the sum of its parts.4. $\overline{BA} = \overline{BC}$.4. Things equal to equal things are equal to eachother.5. $\angle B \cong \angle B$ 5. Reflexive postulate for congruence.	1. $\overline{BD} \cong \overline{BE}$	0
5. $\angle B \cong \angle B$ 5. Reflexive postulate for congruence.		
	4. $\overline{BA} = \overline{BC}$.	4. Things equal to equal things are equal to eachother.
$6. \ \underline{\triangle ABE} \cong \triangle CBD \qquad \qquad 6. \ \text{SAS}$	5. $\angle B \cong \angle B$	5. Reflexive postulate for congruence.
	6. $\triangle ABE \cong \triangle CBD$	6. SAS

4. Given: (1) with tangent \overrightarrow{AB} at P. Chord \overrightarrow{PC} Prove: $\angle BPC = \frac{1}{2}\widehat{PC}$

Reason
1. Parallel postualte
2. Parallel lines cut off \cong arcs in a circle.
3. Arcs are $\cong \Leftrightarrow$ corresponding chords are \cong .
4. An inscribed $\angle = \frac{1}{2}$ the intercepted arc.
5. The base angles of an isosceles \triangle are \cong .
6. Trans. \overline{PC} cuts $\overline{AB} \ \overline{DC}$, alt. int. $\angle s$ are \cong
7. Things = to the same thing are = to each other

5. Write a two-column proof for the statement: "If two angles of a triangle are congruent then the triangle is isosceles.

Given : $\triangle ABC$ with $\angle A \cong \angle B$.	$\overset{C}{\wedge}$
$\mathbf{Prove}:\overline{AC}\cong\overline{BC}$	$1^{\prime}_{1}2$
	$?/$ \downarrow \backslash ?
	$ \lambda \mid \lambda $
	$A \xrightarrow{D} B$

	$A \xrightarrow{\square} D B$
Statement	Reason
1. Draw \overline{CD} bisecting $\angle C$.	1. Postulate: Every angle can be bisected.
2. $\angle 1 \cong \angle 2$	2. To bisect is to divide into two \cong parts.
3. $\angle A \cong \angle B$	3. Given.
4. $\overline{CD} \cong \overline{CD}$.	4. Reflexive postulate for congruence.
5. $\triangle ACD \cong \triangle BCD$.	5. \overline{AAS}
6. $\overline{AC} \cong \overline{BC}$.	6. <u>CPCTC</u>