1. State the relationship between the angles. Are they vertical? complementary adjacent? adjacent? supplementary adjacent? complementary?
(a) $\angle 1$ and $\angle 4$ \qquad
(b) $\angle 3$ and $\angle 4$
(c) $\angle 1$ and $\angle 2$ \qquad
(d) $\angle 4$ and $\angle 5$ \qquad
(e) $\angle 1$ and $\angle 3$ \qquad
(f) $\angle C O B$ and $\angle 5$
2. Complete each statement, and state the postulate that applies.
(a) If Jack and Jill earn the same amount of money each hour and their rate of pay is increased by the same amount, then \qquad because \qquad
(b) In the past year, those mandolins have tripled in value. If they had the same value last year, then \qquad by \qquad
(c) A week ago, there were two classes that had the same enrollment. If the same number of students were dropped in each, then \qquad by \qquad
(d) Since $100^{\circ} \mathrm{C}$ and $212^{\circ} \mathrm{F}$ are the boiling temperatures of water, then \qquad by
\qquad
(e) If two ropes have the same length and each is cut into five equal parts, then \qquad by \qquad
(f) Since he has $\$ 2000$ in Bank A, $\$ 3000$ in Bank B and $\$ 5000$ in Bank C, then \qquad by \qquad
(g) If three quarters and four nickels are compared with three quarters and two dimes then by \qquad
3. Prove each of the following.
(a) Straight angles are congruent.
(b) Complements of congruent angles are congruent.
(c) Vertical angles are congruent.
4. In each part of the figure, $\triangle I, \triangle I I$, and $\triangle I I I$ can be proved congruent. Make a diagram showing the congruent parts and state the reason for congruency.

Given:

$\triangle A B C$ equilateral $\overline{A F}, \overline{B D}, \overline{C E}$ are extensions of the sides of $\triangle A B C$ $\angle 1 \cong \angle 2 \cong \angle 3$
Prove:
$\triangle I \cong \triangle I I \cong \triangle I I I$

Given:

Segment $\overline{A D}$ bisects segment $\overline{B C}$.
Segment $\overline{B C}$ bisects segment $\overline{A D}$.

Prove:

$\triangle A B M$ and $\triangle D C M$ are congruent.

Reason

1. Segment $A D$ bisects segment $B C$.
2. Segments $A M$ and $M D$ are congruent.
3. Segment $B C$ bisects segment $A D$.
4. \qquad
5. $\angle A M B$ and $\angle D M C$ are congruent.
6. \qquad - \qquad
7. Given:
$\triangle A B C$ with $\overline{A C} \cong \overline{B C}$.
Prove:
$\angle A \cong \angle B$

Statement

1. Draw $\overline{C D}$ bisecting $\angle C$.
2. Postulate:
3. \qquad 2. To bisect is to divide into two \cong parts.
4. $\overline{A C} \cong \overline{B C}$
5. Given.
6. $\overline{C D} \cong \overline{C D}$.
7. $\triangle A C D \cong \triangle B C D$.
8.

\qquad
6. $\angle A \cong \angle B$.
6.
7. Given:
(0) with chords $\overline{A B} \| \overline{C D}$.

Prove:
$\widetilde{A C} \cong \widehat{B D}$

Statement	Reason	
1. $\overline{\text { R. Draw chord } \overline{B C} .}$	1. Given.	
2. $\angle A B C \cong \angle B C D$	3. Trans. $\overline{B C}$ cuts $\overleftarrow{A B} \\| \overline{C D}$, alt. int. $\angle \mathrm{s}$ are \cong.	
4.	4. Arcs are $\cong \Leftrightarrow$ corresponding chords are \cong.	

QED
8.

Given:

(0) with tangent $\overleftrightarrow{A B}$ at P.

Chord $\overline{P C}$
Prove:
$\angle B P C=\frac{1}{2} \overparen{P C}$

Statement	Reason	
1. Draw chord $\overline{C D}$ parallel to $\overleftrightarrow{A B}$.		
2.	2. Parallel lines cut off \cong arcs in a circle.	
3. $\overline{D P}=\overline{C P}$	3. Arcs are $\cong \Leftrightarrow$ corresponding chords are \cong.	
4. $\angle P D C=\frac{1}{2} \overparen{P C}$	4.	
5. $\angle P D C \cong \angle P C D$.	5.	
6.	6. Trans. $\overline{P C}$ cuts $\overleftrightarrow{A B} \\| \overrightarrow{D C}$, alt. int. \angle s are \cong	
7. $\angle B P C=\frac{1}{2} \widehat{P C}$.		

QED

