## Math 5 - Trigonometry - Final Exam Solutions

1. 



## Given:

$\overline{A C}$ and $\overline{B D}$ intersect at $E$ which is the midpoint of both $\overline{A C}$ and $\overline{B D}$.
Prove:
$A B C D$ is a parallelogram

| Statement | Reason |
| :---: | :---: |
| 1. $\overline{A E} \cong \overline{E C}$ and $\overline{B E} \cong \overline{E D}$ | 1. Definition of midpoint. |
| 2. $\angle A E B \cong \angle D E C$ and $\angle A E D \cong \angle B E C$ | 2. Vertical angles are congruent. |
| 3. Draw $A B, B C, C D$ and $D A$. | 3. You can draw a segment between any two points. |
| 4. $\triangle A B E \cong \triangle C D E$ \& $\triangle B C E \cong \triangle D A E$ | 4. SAS |
| $\text { 5. } \angle D B C \cong \angle B D A \text { and } \begin{aligned} & \angle D B A \cong \angle B D C \end{aligned}$ | 5. Corresponding parts of $\cong$ triangles are $\cong$ |
| 6. $\overline{A B} \\| \overline{D C}$ and $\overline{A D} \\| \overline{B C}$ | 6. A transversal making alt. int, $\angle \mathrm{s} \cong, \Rightarrow$ lines \|| |
| 7. $A B C D$ is a parallelogram | 7. By definition of parallelogram. |

2. Let $f(x)=\frac{\sqrt{x-1}}{x-3}$.
(a) Evaluate $f(1), f(5)$ and $f\left(a^{2}+1\right)$

ANS: $f(1)=0, f(5)=\frac{\sqrt{4}}{2}=1, f\left(a^{2}+1\right)=\frac{|a|}{a^{2}-2}$
(b) Find the domain of $f$.

ANS: $[1,3) \cup(3, \infty)$
(c) What is the average rate of change of $f$ between $x=5$ and $x=17$ ?

ANS: $\frac{f(17)-f(5)}{17-5}=\frac{\frac{4}{14}-1}{12}=\frac{-5}{7} \cdot \frac{1}{12}=-\frac{5}{84}$
3. Let $f(x)=\sqrt{4-x}$.
(a) Find a formula for the inverse function, $f^{-1}(x)$.

Ans: $y=\sqrt{4-x} \Leftrightarrow y^{2}=4-x$ and $y \geq 0 \Leftrightarrow x=4-y^{2}$ and $y \geq 0$. So the inverse function can be specified at $y=4-x^{2}$ and $x \geq 0$
(b) Find the domain of $f^{-1}$. Recall that the range of $f$ is the domain of $f^{-1}$.

As mentioned in part (a), the domain is $x \geq 0=[0, \infty)$
(c) Complete the table for $f^{-1}(x)$ :

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f^{-1}(x)$ | 4 | 3 | 0 | -5 |

(d) Sketch graphs for $y=f(x)$ and $y=f^{-1}(x)$ together showing symmetry through the line $y=x$ :

4. Find the exact value of each expression:
(a) $\sin \frac{4 \pi}{3}=-\frac{\sqrt{3}}{2}$
(b) $\tan \frac{7 \pi}{6}=\frac{\sqrt{3}}{3}$
(c) $\sec \frac{13 \pi}{6}=\frac{2 \sqrt{3}}{3}$
(d) $\cos \frac{17 \pi}{3}=\frac{1}{2}$
5. Let $f(x)=1+2 \sin \left(\frac{1}{2} x+\frac{\pi}{6}\right)$
(a) Complete the table:

| $x$ | $-\frac{\pi}{3}$ | 0 | $\frac{\pi}{3}$ | $\frac{2 \pi}{3}$ | $\pi$ | $\frac{4 \pi}{3}$ | $\frac{5 \pi}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 2 | $1+\sqrt{3}$ | 3 | $1+\sqrt{3}$ | 2 | 1 |

(b) What are the amplitude, phaseshift, period and line of equilibrium for $f$ ?

Amplitude $=2$, phaseshift $=-\frac{\pi}{3}$, period $=4 \pi$ and $y=1$ is the equilibrium.
(c) Sketch a graph showing one complete oscillation for $f$.

6. The base of the ladder in the figure is 6 ft from the building, and the angle formed by the ladder and the ground is $73^{\circ}$.
(a) How high up the building does the ladder touch?

ANS: Let $H=$ height up the building the ladder reaches. Then $\tan 73^{\circ}=H / 6 \Leftrightarrow H=6 \tan 73^{\circ} \approx 19.6 \mathrm{ft}$.
(b) What is the length of the ladder?

ANS: Let $L=$ length of the ladder.
Then $\cos 73^{\circ}=6 / L \Leftrightarrow L=6 \sec 73^{\circ} \approx 20.5 \mathrm{ft}$.

7. Refer to the figure below.

(a) Find the angle opposite the longest side.

This is a SSS situation, so we use the law of cosines:
$\cos \theta=\frac{+16+25-64}{2(4)(5)}=-\frac{23}{40} \Leftrightarrow \theta=\arccos \frac{-23}{40} \approx 125.1^{\circ}$.
(b) Find the area of the triangle.

ANS: Area $=\frac{1}{2}(4)(5) \sin (\arccos (-23 / 40))=10 \sin \left(\arccos (23 / 40)=\frac{\sqrt{1071}}{4} \approx 8.18\right.$ square units. Alternatively, Heron's formula with semiperimeter of $\frac{17}{2}$ gives area $=\sqrt{\frac{17}{2} \cdot \frac{9}{2} \cdot \frac{7}{2} \cdot \frac{1}{2}}=\frac{\sqrt{1071}}{4}$, too.
8. Find the side labeled $x$.

Use the fact that the sum of interior angles is $180^{\circ}$ and law of sines:

$$
\frac{x}{\sin 69^{\circ}}=\frac{230}{\sin 59^{\circ}} \Leftrightarrow x=\frac{230 \sin 69^{\circ}}{\sin 59^{\circ}} \approx 250.5
$$


9. Consider the ellipse whose graph is shown.
(a) What are the coordinates of the center? $(0,3)$
(b) Find an equation for the ellipse.
$\frac{x^{2}}{16}+\frac{(y-3)^{2}}{9}=1$
(c) What are the coordinates of the foci?
$b^{2}=16-9=7$ so the foci are at $( \pm \sqrt{7}, 3)$

10. Consider the hyperbola whose equation is $(x-1)^{2}-y^{2}=1$
(a) Find the coordinates of center.

ANS: $(1,0)$
(b) Find the $x$-intercepts of the hyperbola.

ANS: If $y=0$ then $(x-1)^{2}=1 \Leftrightarrow x=1 \pm 1$, so $(0,0)$ and $(2,0)$ are the $x$-intercepts.
(c) Find the coordinates of the two foci.
$c^{2}=a^{2}+b^{2}=1+1=2$ so the foci are at $(1 \pm \sqrt{2}, 0)$
(d) Find equations for the asymptotes of the hyperbola.
$y=x-1$ and $y=-x+1$
(e) Sketch a graph for the hyperbola


