Exam 5: Chapter 11 Solutions

Write all responses on separate paper. Remember to organize your work clearly. You may not use your books, notes on this exam, but you will need a scientific calculator to do some approximations.

1. (24 points) Find an equation for th eparabola that satisfies the given conditions. In each case, sketch a graph and draw the line segment which is the focal diameter.
(a) Vertex at $(0,0)$ and focus at $(0,-1)$

ANS: The equation is $-4 y=x^{2}$. The directrix is $y=1$ and the focal diameter extends from $(-2,-1)$ to $(2,-1)$.

(b) Vertex at $(0,0)$ and directrix $x=3$

ANS: The equation is $-12 x=y^{2}$. The focus is at $(-3,0)$ and the focal diameter extends from $(-3,-6)$ to $(-3,6)$.

2. (24 points) Find an equation for the ellipse that satisfies the given conditions. In each case, sketch a graph and draw the line segment from an end of the minor axis to a focus (the length of this segment should be a).
(a) Vertices at $(0, \pm 5)$ and foci at $(0, \pm 4)$

ANS: From the location of the vertices and the focus we have $a=5$ and $c=4$ so $b^{2}=a^{2}-c^{2}=25-16=9$ and the equation of the ellipse is $\frac{y^{2}}{25}+\frac{x^{2}}{9}=1$. The line segment from $(4,0)$ to $(0,3)$ has length 5 .

(b) Foci at $(\pm 2,0)$ and eccentricity $=\frac{1}{2}$

ANS: From the location of the foci we have $c=2$ and since the eccentricity is $e=\frac{c}{a}=\frac{1}{2}$ we have $\frac{2}{a}=\frac{1}{2} \Leftrightarrow a=4$ and so $b^{2}=$ $a^{2}-c^{2}=16-4=12$ Thus the equation is $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$ and a line segment from $(0,2 \sqrt{3})$ to $(2,0)$ has length 4.

(c) Endpoints of the minor axis at $(2,0)$ and $(2,4)$ and endpoints of the major axis at $(-1,2)$ and 5,2$)$
ANS: The center of the ellipse is the midpoint of the minor axis and the major axis, at $(2,2)$ and thus we see that $a=3$ and $b=2$ and the equation is $\frac{(x-2)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$. The foci are at $(2,2 \pm c)$ where $c^{2}=a^{2}-b^{2}=9-4=5 \Leftrightarrow c=\sqrt{5}$ and the line segment from $(0,4)$ to $(2+\sqrt{5}, 2)$ has length 3 .

3. (20 points) Find an equation for the hyperbola that satisfies the given conditions. In each case, find the equations of the asymptotes and sketch a graph showing the hyperbola with its vertice, foci an asymptotes.
(a) Equation is $\frac{x^{2}}{4}-y^{2}=1$ ANS: Evidently, $a=2$ and $b=1$ so $c^{2}=a^{2}+b^{2}=5$ and the foci are at $(\pm \sqrt{5}, 0) \approx(2.24,0)$. The asymptotes are $y= \pm \frac{1}{2} x$

(b) Vertices at $(\pm 12,0)$ and foci at $(\pm 13,0)$

ANS: From the location of the vertices and foci we have $a=12$ and $c=13$ so $b^{2}=c^{2}-a^{2}=$ $169-144=25$ so $b=5$ and the equation is $\frac{x^{2}}{144}-\frac{y^{2}}{25}=1$ and the asymptotes are $y= \pm \frac{5}{12}$.

4. (20 points) Each equation is either an ellipse or a hyperbola. Complete the squares to write the equation in standard form and then identify it as either an ellipse or a hyperbola and state the coordinates of its center.
(a) $x^{2}+2 y^{2}-4 y=0$

ANS: $x^{2}+2\left(y^{2}-2 y\right)=0 \Leftrightarrow x^{2}+2\left(y^{2}-2 y+1\right)=2 \Leftrightarrow x^{2}+2(y-1)^{2}=2 \Leftrightarrow \frac{x^{2}}{2}+(y-1)^{2}=1$ is the equation for an ellipse centered $(0,1)$.
(b) $x^{2}-8 x=y^{2}-6 y \Leftrightarrow x^{2}-8 x+16+9=y^{2}-6 y+9+16 \Leftrightarrow(x-4)^{2}+9=(y-3)^{2}+16 \Leftrightarrow$ $(x-4)^{2}-(y-3)^{2}=7 \Leftrightarrow \frac{(x-4)^{2}}{7}-\frac{(y-3)^{2}}{7}=1$ is a hyperbola centered at $(4,3)$
5. (12 points) Use the Pythagorean identity to find parametric equations for each given conic.
(a) $x^{2}+\frac{(y-3)^{2}}{4}=1$

ANS: $x=\cos (t)$ and $y=3+2 \sin (t)$
(b) $(y-2)^{2}-x^{2}=1$

ANS: $x=\tan (t)$ and $y=2+\sec (t)$

