Write all responses on separate paper. Remember to organize your work clearly. You may not use your books or notes on this exam. You may use a calculator.

1. (14 points) Find the domain of each of the following functions.
(a) $f(x)=\sqrt{7-x}$
(b) $g(x)=\frac{x}{9-x^{2}}$
2. (14 points) Compute and simplify the average rate of change of over the given interval. Hint: recall that the average rate of change is of $y=f(x)$ on the interval $[a, b]$ is the slope of the line connecting $(a, f(a))$ with $(b, f(b))$.
(a) $[a, b]=[0, h]$
(b) $[a, b]=[-h, h]$
3. (18 points) Consider the quadratic function $f(x)=x^{2}-6 x+2$
(a) Express the quadratic function in standard (vertex) form: $y=a(x-h)^{2}+k$
(b) Find the coordinates of the x-intercepts of the parabola.
(c) Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.
4. (14 points) Find the range of the given function and express that in interval notation.
(a) $f(x)=10-4(x-1)^{2}$.
(b) $f(x)=-2 x^{2}+8 x+1$
5. (12 points) Consider the quadratic $f(x)=x^{2}$. What sequence of

- horizontal shift
- vertical shrink
- reflection
- vertical shift
is required to transform this function to $g(x)=5-\frac{1}{2}(x+3)^{2}$?

6. (14 points) Suppose $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{x-2}$. Find a formula for and determine the domain of
(a) $(g \circ f)(x)$.
(b) $(f \circ g)(x)$.
7. (14 points) Find a formula for the inverse function of $f(x)=\frac{1}{2} x+1$ and sketch a graph for $y=f(x)$ and $y=f^{-1}(x)$ together showing the symmetry through the line $y=x$.
