- 1. Find the domain of each of the following functions.
 - (a) $f(x) = \sqrt{7-x}$ SOLN: Domain = $\{x|7-x \ge 0\} = (-\infty, 7]$ (b) $g(x) = \frac{x}{9-x^2}$ SOLN: Domain = $\{x|9-x^2 \ne 0\} = (-\infty, -3) \cup (-3, 3) \cup (3, \infty)$
- 2. Compute and simplify the average rate of change of over the given interval. Hint: recall that the average rate of change is of $f(x) = x^2 + 2x + 3$ on the interval [a, b] is the slope of the line connecting (a, f(a)) with (b, f(b)).

(a)
$$[a,b] = [0,h]$$
 SOLN: $\frac{f(h) - f(0)}{h} = \frac{h^2 + 2h + 3 - 3}{h} = h + 2$
(b) $[a,b] = [-h,h]$ SOLN: $\frac{f(h) - f(-h)}{h} = \frac{h^2 + 2h + 3 - (h^2 - 2h + 3)}{h} = 4$

- 3. Consider the quadratic function $f(x) = x^2 6x + 2$
 - (a) Express the quadratic function in standard (vertex) form: $y = a(x-h)^2 + k$ SOLN: $f(x) = x^2 - 6x + (9 - 9) + 2 = x^2 - 6x + 9 - 7$ $\boxed{= (x-3)^2 - 7}$ so the vertex is at (h,k) = (3,-7)
 - (b) Find the coordinates of the x-intercepts of the parabola. SOLN: $f(x) = 0 \Leftrightarrow (x-3)^2 = 7 \Leftrightarrow x = 3 \pm \sqrt{7}$
 - (c) Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.

- 4. Find the range of the given function and express that in interval notation.
 - (a) $f(x) = 10 4(x 1)^2$. SOLN: $f(x) \le 10$ so the range is $(-\infty, 10]$
 - (b) $f(x) = -2x^2 + 8x + 1$ SOLN: $f(x) = -2(x-2)^2 + 9 \le 9$ so the range is $(-\infty, 9]$
- 5. Consider the quadratic $f(x) = x^2$. What sequence of transformations is required to transform this function to $g(x) = 5 \frac{1}{2}(x+3)^2$? SOLN:
 - horizontal shift: 3 left, $y = (x+3)^2$
 - vertical shrink: by $\frac{1}{2}$, $y = \frac{1}{2}(x+3)^2$
 - reflection: Across the x-axis, $y = -\frac{1}{2}(x+3)^2$
 - vertical shift: up 5, $y = 5 \frac{1}{2}(x+3)^2$

6. Suppose $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x-2}$. Find a formula for and determine the domain of

- (a) $(g \circ f)(x) = \frac{1}{\sqrt{x-2}}$ has a domain of $(2, \infty)$. (b) $(f \circ g)(x) = \frac{1}{\sqrt{x-2}}$ has a domain of $[0, 4) \cup (4, \infty)$.
- 7. Find a formula for the inverse function of $f(x) = \frac{1}{2}x + 1$ and sketch a graph for y = f(x) and $y = f^{-1}(x)$ together showing the symmetry through the line y = x. SOLN: Solve $y = \frac{1}{2}x + 1$ for x = 2(y-1) to get the formula for $f^{-1}(x) = 2x 2$

