Exam 2: Chapter 2 Solutions

1. Find the domain of each of the following functions.
(a) $f(x)=\sqrt{7-x}$

SOLN: Domain $=\{x \mid 7-x \geq 0\}=(-\infty, 7]$
(b) $g(x)=\frac{x}{9-x^{2}}$ SOLN: Domain $=\left\{x \mid 9-x^{2} \neq 0\right\}=(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
2. Compute and simplify the average rate of change of over the given interval. Hint: recall that the average rate of change is of $f(x)=x^{2}+2 x+3$ on the interval $[a, b]$ is the slope of the line connecting $(a, f(a))$ with $(b, f(b))$.
(a) $[a, b]=[0, h]$ SOLN: $\frac{f(h)-f(0)}{h}=\frac{h^{2}+2 h+3-3}{h}=h+2$
(b) $[a, b]=[-h, h]$ SOLN: $\frac{f(h)-f(-h)}{h}=\frac{h^{2}+2 h+3-\left(h^{2}-2 h+3\right)}{h}=4$
3. Consider the quadratic function $f(x)=x^{2}-6 x+2$
(a) Express the quadratic function in standard (vertex) form:
$y=a(x-h)^{2}+k$
SOLN: $f(x)=x^{2}-6 x+(9-9)+2=x^{2}-6 x+9-7$ $=(x-3)^{2}-7$ so the vertex is at $(h, k)=(3,-7)$
(b) Find the coordinates of the x-intercepts of the parabola. SOLN: $f(x)=0 \Leftrightarrow(x-3)^{2}=7 \Leftrightarrow x=3 \pm \sqrt{7}$
(c) Carefully construct a large graph, showing the coordinates of the vertex and all intercepts.

4. Find the range of the given function and express that in interval notation.
(a) $f(x)=10-4(x-1)^{2}$.

SOLN: $f(x) \leq 10$ so the range is $(-\infty, 10$]
(b) $f(x)=-2 x^{2}+8 x+1$

SOLN: $f(x)=-2(x-2)^{2}+9 \leq 9$ so the range is $(-\infty, 9]$
5. Consider the quadratic $f(x)=x^{2}$. What sequence of transformations is required to transform this function to $g(x)=5-\frac{1}{2}(x+3)^{2}$? SOLN:

- horizontal shift: 3 left, $y=(x+3)^{2}$
- vertical shrink: by $\frac{1}{2}, y=\frac{1}{2}(x+3)^{2}$
- reflection: Across the x-axis, $y=-\frac{1}{2}(x+3)^{2}$
- vertical shift: up $5, y=5-\frac{1}{2}(x+3)^{2}$

6. Suppose $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{x-2}$. Find a formula for and determine the domain of
(a) $(g \circ f)(x)=\frac{1}{\sqrt{x-2}}$ has a domain of $(2, \infty)$.
(b) $(f \circ g)(x)=\frac{1}{\sqrt{x}-2}$ has a domain of $[0,4) \cup(4, \infty)$.
7. Find a formula for the inverse function of $f(x)=\frac{1}{2} x+1$ and sketch a graph for $y=f(x)$ and $y=f^{-1}(x)$ together showing the symmetry through the line $y=x$. SOLN: Solve $y=\frac{1}{2} x+1$ for $x=2(y-1)$ to get the formula for $f^{-1}(x)=2 x-2$

