Math 5 - Trigonometry - Chapter 11 Test - Fall '12 Name $\qquad$
Show your work for credit. Write all responses on separate paper. Do not abuse a calculator.

1. Find an equation for the parabola with vertex at $(0,0)$ and
a. focus at $(0,9)$.
b. directrix along $x=2$.
c. passing through $(2,3)$.
d. focal diameter from $(3,-8)$ to $(3,8)$.
2. Find an equation for the ellipse with foci $( \pm 8,0)$ and
a. (minor axis) vertices $(0, \pm 12)$
b. passing through $(8,4)$.
c. eccentricity $=0.5$
3. Find the vertices, foci, and asymptotes of the hyperbola $108 y^{2}-75 x^{2}=300$ and sketch a graph illustrating these features.
4. Find parametric equations to describe the conic section:
a. $4 x^{2}+y^{2}=1$
b. $16 x^{2}-9 y^{2}=100$
5. Write the equation for the conic section described by $\begin{aligned} & y=2 \sec (3 t) \\ & x=5 \tan (3 t)\end{aligned}$ in rectangular form.
6. Consider the diagram below with concentric circles with radii $a$ and $b$ where $a>b$ centered at the origin and the angle $t$ swept out counterclockwise from the positive $x$-axis.
a. Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, prove that $x=a \cos t, y=b \sin t$ parameterizes $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b. Note that for any $t$, the shaded right triangle below has hypotenuse $a-b$. Show that the coordinates of point $P$ are $(a \cos t, b \sin t)$.


## Math 5 - Trigonometry - Chapter 11 Test Solutions.

1. Find an equation for the parabola with vertex at $(0,0)$ and
c. focus at $(0,9)$.

SOLN: $4 p y=x^{2}$ leads to $36 y=x^{2}$.
d. directrix along $x=2$.

SOLN: $4 p x=y^{2}$ leads to $4(-2) x=y^{2}$, or, equivalently, $-8 x=y^{2}$
e. passing through $(2,3)$.

SOLN: There are two such parabolas: one horizontal and one vertical. Specifically, $4 p(3)=(2)^{2}$ leads to $4 y=3 x^{2}$ and $4 p(2)=(3)^{2}$ leads to $9 x=2 y^{2}$.
f. latus rectum from $(3,-8)$ to $(3,8)$.

SOLN: This means that the length of the latus rectum, $4 p=16$ so $p=4$.
Since the parabola opens to the right, $16 x=y^{2}$.
2. Find an equation for the ellipse with foci $( \pm 8,0)$ and
a. (minor axis) vertices $(0, \pm 12)$

SOLN: $c=8$ and $b=12$ means that $a^{2}=8^{2}+12^{2}=208$ so the standard form of the equation is $x^{2} / 208+y^{2} / 144=1$
b. passing through $(8,4)$.

SOLN: $a^{2}=8^{2}+b^{2}$ means we can write

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{64}{64+b^{2}}+\frac{16}{b^{2}}=1 \Leftrightarrow 64 b^{2}+16\left(64+b^{2}\right)=b^{2}\left(64+b^{2}\right) \Leftrightarrow b^{4}-16 b^{2}=1024 \\
& \Leftrightarrow b^{4}-16 b^{2}+64=1024+64 \Leftrightarrow\left(b^{2}-8\right)^{2}=1088 \Leftrightarrow b^{2}=8 \pm \sqrt{1088} \text { so } \\
& b^{2}=8+8 \sqrt{17} \Rightarrow a^{2}=72+8 \sqrt{17} \text { and the equation is } \frac{x^{2}}{72+8 \sqrt{17}}+\frac{y^{2}}{8+8 \sqrt{17}}=1
\end{aligned}
$$

c. eccentricity $=0.5$

SOLN: Eccentricity $=c / a=8 / a=1 / 2$ means $a=16$ and $a^{2}=64+b^{2}$ means $b^{2}=192$ so the equation is $\frac{x^{2}}{256}+\frac{y^{2}}{192}=1$
3. Find the vertices, foci, and asymptotes of the hyperbola $108 y^{2}-75 x^{2}=300$ and sketch a graph illustrating these features.
SOLN: $108 y^{2}-75 x^{2}=300 \Leftrightarrow \frac{9 y^{2}}{25}-\frac{x^{2}}{4}=1$ so $a=\frac{5}{3}, b=2$ and $c^{2}=\left(\frac{5}{3}\right)^{2}+2^{2}=\frac{61}{9}$. The vertices are at $\left(0, \pm \frac{5}{3}\right)$ the foci are at $\left(0, \pm \frac{\sqrt{61}}{3}\right)$. The asymptotes are $y= \pm \frac{5}{6} x$ and the graph is shown:

4. Find parametric equations to describe the conic section:
a. $4 x^{2}+y^{2}=1 \Leftrightarrow x=\sin (17 t) / 2 ; y=\cos (17 t)$
b. $16 x^{2}-9 y^{2}=100 \Leftrightarrow \frac{4 x^{2}}{25}-\frac{9 y^{2}}{100}=1 \Leftrightarrow x=\frac{5}{2} \sec t, y=\frac{10}{3} \tan t$
5. in rectangular form, the system $\begin{aligned} & y=2 \sec (3 t) \\ & x=5 \tan (3 t)\end{aligned}$ is $\frac{y^{2}}{4}-\frac{x^{2}}{25}=1$
6. Consider the diagram below with concentric circles with radii $a$ and $b$ where $a>b$ centered at the origin and the angle $t$ swept out counterclockwise from the positive $x$-axis.
a. Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, prove that $x=a \cos t, y=b \sin t$ parameterizes $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Proof: Substituting, se have $\frac{(a \cos t)^{2}}{a^{2}}+\frac{(b \sin t)^{2}}{b^{2}}=\cos ^{2} t+\sin ^{2} t=1$, by Pythagoras' identity.
b. Note that for any $t$, the shaded right triangle below has hypotenuse $a-b$. Show that the coordinates of point $P$ are $(a \cos t, b \sin t)$.
SOLN: The $x$-coordinate of $P$ is the same as the $x$-coordinate on the circle of radius $a$, which is $a \cos t$ while the $y$-coordinate of $P$ is the same as the $y$-coordinate on the circle of radius $b$, which is $b \sin t$.


